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Abstract. We propose a new method for approximating the expected quadratic variation of an
asset based on its option prices. The quadratic variation of an asset price is often regarded as
a measure of its volatility, and its expected value under pricing measure can be understood as
the market’s expectation of future volatility. We utilize the relation between the asset variance
and the Black-Scholes implied volatility surface, and discuss the merits of this new model-free
approach compared to the CBOE procedure underlying the VIX index. The interpolation scheme
for the volatility surface we introduce is designed to be consistent with arbitrage bounds. We
show numerically under the Heston stochastic volatility model that this approach significantly
reduces the approximation errors, and we further provide empirical evidence from the Nikkei 225
options that the new implied volatility index is more accurate in predicting future volatility.
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1. Introduction

Market volatility is one of the most important ingredients in financial decision-making. Yet it is not
a quantity directly observable in the market. One measure of market volatility is the options-implied
expectation of the short-term quadratic variation of the market index. The VIX index disseminated by
the Chicago Board Options Exchange (CBOE) is one such measure calculated from the prices of the S&P
500 index options. This volatility index is model-free in the sense that it does not rely on a particular option
pricing model such as the Black-Scholes model. Indeed, it approximates the risk-neutral expectations
of the quadratic variations of the market index over a fixed expiration period based on their model-free
link with the prices of the corresponding index options. The theory behind this link assumes, among
other things, the existence of a continuum of options over an infinite range of strike prices. Thus,
approximation errors would necessarily ensue in any attempt to quantify market volatility from the
limited number of observable option prices.

In order to reduce approximation errors, this paper proposes a new method based on a formula
induced by the model-free link introduced in the context of pricing variance swaps. Given a continuous
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semimartingale S standing for an asset price process, we have

(1.1)
1
T
E[〈log(S)〉T] =

∫
σ(g(z))2φ(z)dz.

Here, σ expresses the Black-Scholes implied volatility of the asset S with maturity T as a function of
log-moneyness k = log(K/F) with strike price K and forward price F, g is the inverse function of the
mapping

(1.2) k 7→ d2(k) := d2(k, σ(k))

where

(1.3) d2(k, σ) := − k

σ
√

T
− σ
√

T
2
,

and φ is the standard normal density. It should be noted that the use of the Black-Scholes implied
volatility function σ does not imply the dependency of the new method on this particular option theory.
The Black-Scholes implied volatility function is a nonlinear transformation of the option prices that reduces
to a constant only in a special case where the underlying asset follows a log-normal distribution. The
formula (1.1) states that an average of the Black-Scholes implied variance σ2 is equal to an average of the
quadratic variations. This issue will be discussed in further detail in Section 2.

The form of the integral (1.1) written with respect to the standard normal density φ, together with
polynomial interpolation of the integrand, enables us to avoid numerical integration. Our approximation
method therefore provides better accuracy than those which rely on discretization to compute integrals
such as the CBOE method and the one proposed by Jiang and Tian (2007). We also propose a new
C1-interpolation method by cubic polynomials in the Black-Scholes implied volatility scale to overcome
the errors typically incurred by the usual C2-interpolation in terms of cubic splines.

We develop a new volatility index using our approximation method and evaluate its efficiency nu-
merically based on the Nikkei 225 index options traded on the Osaka Securities Exchange (OSE). Before
using the actual options price data, we first consider artificial data generated under the Heston stochas-
tic volatility model (Heston (1993)). The result shows that the new index values are significantly closer
to the true values than those produced by the CBOE procedure. We then use the actual options data
and evaluate empirically its ability to forecast market volatility, using as many as 15 realized variance
estimators of the Nikkei 225 stock average. Our new index is associated with higher R2’s than its CBOE
counterpart for all cases, implying that it forecasts market volatility more accurately. These numerical
results provide further evidence on the effectiveness of our approximation method and the usefulness
of the new volatility index.

The remainder of the paper is organized as follows. We first review in Section 2 the theory underlying
the development of the model-free implied volatility, and describe in Section 3 the new algorithm for
computing the volatility index. We then discuss the advantages of using our approximation method
over the CBOE procedure in Section 4, along with numerical results within the setting of the Heston
model. Section 5 provides some empirical evidence based on the market prices of the Nikkei 225
options, and shows that the new volatility index has the potential to predict future volatility more
accurately than its comparative index based on the CBOE procedure. Section 6 concludes the paper.
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For readers’ convenience, Appendix A gives the proofs of the theorems in Section 2 that are extracted
from Fukasawa (2010). Appendix B provides a detailed description of the various estimators of realized
variance used in Section 5.

2. Model-free formulas and their approximations

This section reviews the model-free formulas for the quadratic variation of the underlying asset and
the approximation methods. Let S and S0 stand for risky and risk-free asset price processes, respectively.
If S is a continuous semimartingale and S0 is a deterministic process of locally bounded variation, then
we have, by Itô’s formula,

log
(ST

S0

)
=

∫ T

0

dSt

St
− 1

2

∫ T

0

d〈S〉t
S2

t

=

∫ T

0

dS∗t
S∗t
+ log

S0
T

S0
0

 − 1
2
〈log(S)〉T

where S∗t := St/S0
t . This implies, under any risk-neutral expectation E, that

(2.1) E
[〈log(S)〉T

]
= −2E

[
log

(ST

S0

)]
+ 2E

log

S0
T

S0
0

 = −2E
[
log

(
ST

E[ST]

)]
.

The expected quadratic variation is therefore determined by the distribution of ST/E[ST]. It should be
remarked here that this relation between the expected quadratic variation and the expected log price
was extended to the time-changed Lévy model by Carr, Lee and Wu (2009), where the multiplier in the
above equality changes from −2 in general.

Now, denote by F the T-expiry forward price of the asset S, and by C(K) and P(K), respectively, the
undiscounted call and put option prices of the same asset with strike K and maturity T. As usual, we
suppose that there exists a probability measure E such that

F = E[ST], C(K) = E[(ST − K)+], P(K) = E[(K − ST)+]

for all K > 0. In addition, we suppose that ST admits a density under E and that there exists p > 0 such
that

E[S−p
T ] < ∞.

Then, the density apparently coincides with C′′(K) = P′′(K), and after integration-by-parts we have for
any K0 > 0 that

(2.2) −2E[log(ST/F)] = 2
∫ K0

0

P(K)
K2 dK + 2

∫ ∞

K0

C(K)
K2 dK + 2

∫ F

K0

K − F
K2 dK.

Combining this and (2.1), we obtain a model-free relation between the expected quadratic variations and
the vanilla option prices, which enables us to calculate a model-free measure of the volatility implicit in
the market prices of the options contracts. In practice, however, the number of available option prices
is finite and we need to approximate the integrals on the right-hand side of (2.2). The CBOE procedure,
which underlies the computation of the current VIX index, refers to the approximation formula:

(2.3) −2E[log(ST/F)] ≈ 2
K0−1∑

K=Kmin

P(K)
K2 ∆K +

P(K0) + C(K0)
K2

0

∆K0 + 2
Kmax∑

K=K0+1

C(K)
K2 ∆K −

( F
K0
− 1

)2
.
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Here, Kmin and Kmax represent, respectively, the lowest and highest strikes among the listed options.
The strike price K0 is taken to be closest to the forward price F among the set of strike prices smaller
than or equal to F. This approximation method will be revisited in Section 4, in comparison to our
own approximation method described in the next section. For a comprehensive account of the CBOE
procedure, reference can be made to, for example, Carr and Wu (2006).

The formula (1.1) is given in Gatheral (2006) as a reformulation of (2.2). See also Carr and Lee (2009).
The essentially same formula can be found in Morokoff, Akesson and Zhou (1999) and Chriss and
Morokoff (1999). Here we state a result from Fukasawa (2010) where the formula is proved under less
restrictive conditions. We give the proof in Appendix A.

Theorem 2.1. Define PBS : R × (0,∞)→ (0,∞) by

PBS(k, σ) := FekΦ(−d2(k, σ)) − FΦ(−d1(k, σ)),

where Φ is the standard normal distribution function, d2(·, ·) is as defined in (1.3), and d1(k, σ) := d2(k, σ)+ σ
√

T.
Then the Black-Scholes implied volatility σ : R→ [0,∞) is well-defined by

(2.4) σ(k) := PBS(k, ·)−1(P(Fek)),

or, equivalently,
PBS(k, σ(k)) = P(Fek).

Moreover, the mapping d2 : k 7→ d2(k, σ(k)) is a decreasing function and it holds that

− 2
T
E[log(ST/F)] =

∫ ∞

−∞
σ(g(z))2φ(z)dz,

where g is the inverse function of d2.

As we shall shortly see in the next section, we successfully avoid numerical integrations by taking
advantage of the form of the integral with respect toφ and the polynomial interpolation of the integrand.
As can be easily seen in the analysis in Appendix A, the condition that ST admits a density also implies
that σ is continuously differentiable and its derivative is absolutely continuous. It is therefore natural
to take a C1-interpolation/extrapolation by a piecewise polynomial. In addition, we have the following
result that should be taken into consideration. For its proof, see Appendix A.

Theorem 2.2. For z, z0 ∈ R, put

σ̂(z) := σ(g(z)),

α±(z; z0) := −z ±
√
σ̂(z0)2 + 2z0σ̂(z0) + z2.

Then we have the following.

(i) For every z ∈ R, we have
dσ̂
dz

(z) > −1.

(ii) For every z, z0 ∈ R with z > z0 ≥ 0, we have

σ̂(z) > α+(z, z0) > (σ̂(z0) + z0 − z)+.
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(iii) For every z, z0 ∈ R with z0 > z ≥ 0, we have

σ̂(z) < α+(z, z0) < σ̂(z0) + z0 − z.

(iv) For every z, z0 ∈ R with z < z0 ≤ 0, we have

σ̂(z) > α−(z, z0).

(v) There exists z∗ < 0 such that σ̂(z∗) = −z∗ and it holds for every z, z0 ∈ R with z < z0 ≤ z∗ that

−z > σ̂(z) > α−(z, z0) > 0.

The principal message from this theorem is the following:

(i) The interpolation scheme should not produce excessive oscillations.
(ii) The extrapolation scheme should not induce a rapid decay of σ̂(z) as |z| → ∞. In fact Theorem 2.2

implies that 1/σ̂(z) = O(|z|) as |z| → ∞.

In the next section, we propose an algorithm that meets the above requirements. We further address its
advantages over the CBOE procedure in Section 4.

3. Algorithm

This section describes our algorithm for approximating accurately the annualized expected quadratic
variation

1
T
E

[〈log(S)〉T
]
= − 2

T
E[log(ST/F)] =

∫
σ(g(z))2φ(z)dz(3.1)

using a set of option prices of the same maturity. It is applied to several options data sets with different
maturities, and the results are then combined to attain the volatility index. In a nutshell, the algorithm
consists of three steps: (1) selecting a set of valid options to be used, (2) approximating the function
z 7→ σ(g(z))2 in terms of a set of cubic polynomials and (3) integrating the obtained function with respect
to the normal density φ. The rest of this section is devoted to describing each step in detail.

3.1. STEP 1 – selecting the options to be used in the index calculation. As a preliminary step, a subset
of options are selected for the index calculation. We first identify the at-the-money (ATM) strike price K0,
and subsequently the out-of-the-money (OTM) calls and puts. The forward price is determined through
the theoretical put-call parity relationship using ATM put and call options. Both transaction and bid/ask
data are used in this step.

The first task of this step is to determine K0, which corresponds to the strike price at which the
difference between put and call option prices is minimized. Here, we use only transactions data. Notice,
however, that transactions prices are used only for the purpose of determining K0, thereby contributing
only indirectly to the index calculation. In case of equal put-call differences between two sets of options,
the highest strike is selected. The forward price is then calculated using the formula

F = K0 + erT(call price − put price)

where the call and put option prices are ATM transaction prices with strike K0 and we use the 3-month
Certificates of Deposit (CD) rates as proxy for the interest rate r.
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Using K0 as the ATM strike price, the sets of OTM puts and calls are then identified. OTM puts are
selected among all put options with strike prices less than or equal to K0, whereas OTM calls are selected
among all call options with strike prices greater than K0. We consider only options for which bid/ask
prices are well-defined. This means that an option is bound to be eliminated unless both bid and ask
prices are available. We further sift the data by discarding any option with a ratio of ask to bid prices
greater than or equal to some constant c so as to focus on the set of reliable mid quotes that will be used
later. Here we use c = 2. It should be mentioned that the options at K0 themselves may fail to satisfy
these conditions and may not be used for the index calculation.

Table 1 illustrates how the ATM strike price and OTM puts and calls are selected. The strike price
10, 000 (in JPY) is associated with the smallest difference 105 (using transaction data) and it hence becomes
the ATM strike K0. The puts and calls are then selected accordingly using the bid-ask data. Here the
put options with strike 6, 500 and 7, 500 and the call options with 12, 500 and 12, 750 are eliminated by
the ratio rule described above. Suppose r = 0.004825, which represents the interest rate over the time to
maturity T = 0.11984398782344, expressed in years, then the forward price F amounts to

10000 + exp(0.004825 × 0.11984398782344) × (400 − 295) = 10105.0607335181.

3.2. STEP 2 – calculating volatility. Using the options data selected in the previous step, we approximate
the integrand of the right-hand side of (3.1),

z 7→ σ(g(z))2.(3.2)

This is attained in three stages: (i) obtaining from the available options a sequence of data points that
will act as “knots” for the regression based on (3.2), (ii) constructing, using these data points, a function
that approximates (3.2), and finally (iii) integrating it with respect to the normal density, and obtaining
the implied variance using the identity (3.1). Throughout this step, the bid/ask option prices are used.

STEP 2-1 – converting the data. Each options data consists of the option price and strike price K = Fek,
and this is sufficient to compute the corresponding implied volatility σ(k) as defined in (2.4). A data
point (d2(k), σ(k)2) is thereby obtained for each option. More precisely, the forward price F is obtained in
STEP 1, and then the bisection method with error bound 1.0e− 9 is used to compute implied volatilities.

As is shown in Theorem 2.1, d2(k) is decreasing in k, thereby decreasing in K as well. In order to satisfy
this constraint, we disregard the data points on which this monotonicity fails, and focus on the (longest
possible) interval of data points at which the monotonicity holds. Starting from the put option with the
highest strike (regularly K0), each option is visited backward in K to make sure that d2(k) is decreasing.
Once monotonicity breaks down, the corresponding put option and any put option with lower strikes
are discarded. The same procedure is applied to call options. Starting from the call option with the
lowest strike, each option is visited forward in K; once monotonicity breaks down, the associated call
option and any call option with higher strikes are similarly discarded. The first five columns in Table 2
show the option prices selected from Table 1 and their corresponding d2’s and implied volatilities. Here,
d2 is found to be monotonically decreasing in the strike price, and therefore no truncation is applied.
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Strike
Put

trans. ask bid
Call

trans. ask bid
difference type mid price

5000 - 1 - - 5120 5090 - - -
5500 - 1 - - 4620 4590 - - -
6000 1 1 - - 4120 4090 - - -
6500 2 2 1 - 3620 3590 - - -
7000 3 4 3 - 3120 3100 - Put 3.5
7500 9 9 4 - 2630 2600 - - -
8000 17 17 16 2150 2140 2110 2133 Put 16.5
8250 25 25 20 - 1890 1870 - Put 22.5
8500 30 35 30 - 1650 1630 - Put 32.5
8750 45 50 45 - 1420 1390 - Put 47.5
9000 65 70 65 - 1190 1170 - Put 67.5
9250 100 105 95 950 970 950 850 Put 100
9500 150 150 145 745 765 745 595 Put 147.5
9750 215 215 205 565 575 560 350 Put 210
10000 295 300 295 400 410 400 105 Put 297.5
10250 405 420 405 280 280 265 125 Call 272.5
10500 550 570 550 165 175 165 385 Call 170
10750 730 750 730 100 105 100 630 Call 102.5
11000 - 955 940 55 60 55 - Call 57.5
11250 1150 1180 1160 30 35 30 1120 Call 32.5
11500 - 1420 1390 18 19 17 - Call 18
11750 1650 1660 1640 9 10 9 1641 Call 9.5
12000 - 1910 1880 6 6 5 - Call 5.5
12250 - 2150 2130 3 4 3 - Call 3.5
12500 - 2400 2380 2 2 1 - - -
12750 - 2650 2620 1 2 1 - - -
13000 - 2900 2870 - 1 - - - -
13500 - 3400 3370 - 1 - - - -
14000 - 3900 3880 - 1 - - - -
14500 - 4400 4380 - 1 - - - -

Table 1. An example illustrating how the ATM strike and OTM puts and calls are selected.

STEP 2-2 – constructing a function approximating (3.2). After STEP 2-1, we suppose there are M
data points. We denote by x1 ≤ · · · ≤ xM the ascending sequence of d2(·) and by y1 ≤ · · · ≤ yM the
corresponding sequence of implied volatilities σ(·)2. In the example in Table 2, M = 19, x1 = −2.3338,
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. . . , xM = 2.322589 and y1 = 0.05886305, . . . , yM = 0.1953966. For each of the following intervals

(−∞, x1], [x1, x2], [x1, x2], . . . , [xM−1, xM] and [xM,∞),

a cubic polynomial is defined so that their union is continuous and differentiable onR and goes through
each data point.

In defining the cubic polynomial for a given interval, say [x j, x j+1] for some j = 1, . . . ,M − 1, there are
two more “degrees of freedom” remaining after satisfying the requirements that it goes through (x j, y j)
and (x j+1, y j+1). It should be noted that there are various ways of using these degrees of freedom. A
typical example uses cubic splines as in Jiang and Tian (2007), which realizes the twice-differentiability at
these joint points. We choose, however, to obtain polynomials in the way we shall discuss hereafter. For
(−∞, x1] and [xM,∞), we use constant extrapolation. In the next section, we will discuss this method in
comparison to the one by Jiang and Tian (2007).

The slope of the cubic polynomial at each joint point
{
(x j, y j); j = 1, . . . ,M

}
is first determined. We

initially set y′(x1) = y′(xM) = 0. For 2 ≤ j ≤ M − 1, the slope is chosen so that “the incidence angle
becomes equal to the reflected angle”. In other words, we construct a polynomial so that the angle made
by its tangent line at (x j, y j) and the line going through (x j−1, y j−1) and (x j, y j) is equal to the angle made
by the same tangent line and the line going through (x j, y j) and (x j+1, y j+1), as shown in Figure 1. This

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10

0.
20

0.
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0.
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45
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d2
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Figure 1. The incidence angle becomes equal to the reflected angle. The y-axis
refers to IV, which represents Implied Variance in this case.

can be calculated as in the following:

y′(x j) = −
(

x j+1 − x j

l j+1
−

x j − x j−1

l j

)/ (
y j+1 − y j

l j+1
−

y j − y j−1

l j

)
where l j and l j+1 are Euclidean distances from (x j, y j) to (x j−1, y j−1) and (x j+1, y j+1), respectively.
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For every 1 ≤ j ≤ M, the polynomial on [x j, x j+1] is now uniquely determined by the two end-points
(x j, y j) and (x j+1, y j+1) and the slopes at these points. We represent the polynomial by

y(x) = a j + b j(x − x j) + c j(x − x j)2 + d j(x − x j)3, x j ≤ x ≤ x j+1

where a j, b j, c j and d j are the coefficients to be determined. It can be easily shown that

a j = y j,

b j = y′(x j),

c j = (3∆y j − ∆x jy′(x j+1) − 2∆x jy′(x j))/(∆x2
j ),

d j = (∆y j − y′(x j)∆x j − c j∆x2
j )/(∆x3

j ),

where ∆x j = x j+1 − x j and ∆y j = y j+1 − y j. For the polynomials on (−∞, x0] and [xM,∞), we set y = x0

and y = xM, respectively. Figure 2 shows the polynomial based on the example in Table 2.

Figure 2. The cubic polynomial obtained based on the option data in Table 2.
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strike type price d2 a (impl. vol.) b c d
7000 P 3.5 2.322589 0.1953966 0 0 0
8000 P 16.5 1.737578 0.1401579 0.1024657 0.1339089 -0.2523994
8250 P 22.5 1.597871 0.1247173 0.0900612 0.3505619 -1.4609950
8500 P 32.5 1.428667 0.1129279 0.0628586 -0.0399028 0.4739328
8750 P 47.5 1.243389 0.1025435 0.0574971 -0.0524102 0.2406433
9000 P 67.5 1.054255 0.0913947 0.0472180 0.1316943 -0.3684178
9250 P 100.0 0.833485 0.0835569 0.0318685 -0.0201518 0.1658297
9500 P 147.5 0.595460 0.0768361 0.0298054 -0.0284511 0.0918246
9750 P 210.0 0.347682 0.0690620 0.0273430 0.0388834 -0.0912490

10000 P 297.5 0.077152 0.0627555 0.0188023 0.0184341 -0.0065281
10250 C 272.5 -0.211813 0.0586251 0.0146191 -0.0178526 0.0578870
10500 C 170.0 -0.516513 0.0540715 0.0102862 0.0316420 -0.0536746
10750 C 102.5 -0.820640 0.0523597 0.0056111 -0.0151997 0.0501673
11000 C 57.5 -1.128248 0.0506391 0.0020201 0.0231773 -0.0375809
11250 C 32.5 -1.410956 0.0510783 -0.0023874 -0.0067401 0.0342762
11500 C 18.0 -1.678436 0.0519399 -0.0026407 -0.0074597 0.0197729
11750 C 9.5 -1.941339 0.0524815 -0.0067655 0.0380046 -0.0764793
12000 C 5.5 -2.158142 0.0549685 -0.0168207 0.0276429 -0.0136939
12250 C 3.5 -2.333800 0.0588631 0 -0.2828918 0.8919309

Table 2. The values of d2 and a, b, c, d representing the coefficients of the polyno-
mials a j, b j, c j, d j based on the selected option prices listed in Table 1.

3.3. STEP 3 – integrating. Now we obtain the integral of the function. Notice that

∫ ∞

−∞
σ(g(z))2φ(z)dz =

M−1∑
j=1

∫ x j+1

x j

σ(g(z))2φ(z)dz +
∫ x1

−∞
σ(g(z))2φ(z)dz +

∫ ∞

xM

σ(g(z))2φ(z)dz.

Here, in particular, for every 1 ≤ j ≤M − 1, we have

∫ x j+1

x j

σ(g(z))2φ(z)dz ≈
∫ x j+1

x j

y(z)φ(z)dz

=

∫ x j+1

x j

(
a j + b j(z − x j) + c j(z − x j)2 + d j(z − x j)3

)
φ(z)dz

= a jA j + b jB j + c jC j + d jD j
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where

A j := Φ(x j+1) −Φ(x j),

B j := −(φ(x j+1) − φ(x j)) − x j

(
Φ(x j+1) −Φ(x j)

)
,

C j := −
(
x j+1φ(x j+1) − x jφ(x j)

)
+ 2x j

(
φ(x j+1) − φ(x j)

)
+ (1 + x2

j )
(
Φ(x j+1) −Φ(x j)

)
,

D j := (1 − x2
j+1)φ(x j+1) − (1 − x2

j )φ(x j) + 3x j(x j+1φ(x j+1) − x jφ(x j))

− 3(1 + x2
j )(φ(x j+1) − φ(x j)) − x j(3 + x2

j )(Φ(x j+1) −Φ(x j)).

The implied variance (3.1) can thus be approximated using the above formula.

4. Comparison to the CBOE procedure

This section discusses the new method in comparison to the CBOE procedure. An apparent disad-
vantage of the CBOE approximation (2.3) is that it leads the underestimation of the expected quadratic
variation due to the reduced contributions of P(K) on K < Kmin and C(K) on K > Kmax. This is exacerbated
even further when the range of available strike prices is not sufficiently wide.

Let us illustrate this issue by using the Nikkei 225 options in comparison to the S&P 500 options. On
October 9, 2008, the S&P 500 index dropped to 909.92 USD, and it was followed by the Nikkei stock
average, which decreased to 8276.43 JPY on the next day. With both indexes dropping around 10% on
a single day, the ranges of strikes for the corresponding options are however significantly different. As
shown in Table 3, the lowest strike of the Nikkei 225 index option Kmin approaches the spot price of the
underlying index; it is as large as 88% of the spot price, which is tremendously larger than the ratio for
the S&P case. As a result, as can be observed in Table 4, the price of the put option at Kmin becomes
significantly high in comparison to the single-digit prices reported in Table 1 under normal market
conditions. In this case, the cutting-off of the integral over [0,Kmin] severely affects the approximation

Spot price Kmin and ratio to spot price on Oct. 9 (Oct. 10)
Oct. 8 (Oct. 9) Oct. 9 (Oct. 10) Nov. maturity Dec. maturity

S&P 984.94 909.92 400 (40%) 400 (40%)
Nikkei 9157.49 8276.43 7250 (88%) 7250 (88%)

Table 3. The lowest strikes of the S&P 500 and the Nikkei 225 index options and
the spot prices of their underlying market indexes.

because the integrand P(K)/K2 is not sufficiently small around K = Kmin. Moreover, a sharp decline
in asset value tends to be accompanied with an increase in expected volatility, or equivalently a fatter
tail of P(K). This further amplifies the effect of the cutting-off. The CBOE procedure (2.3) is therefore
likely to lead to a non-negligible negative bias in options markets with unaccommodative listing rules,
particularly during financial crises. A more accurate estimation of implied volatility is indeed required
for this reason.

Our approach improves this approximation through the process of extrapolation. Jiang and Tian
(2007) employed the cubic spline for the Black-Scholes implied volatility with linear extrapolation.
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Nov. maturity Dec. maturity
strike trans. ask bid trans. ask bid
7250 500 520 500 695 695 655
7500 580 600 580 605 605 570
7750 680 700 680 790 790 760
8000 805 805 790 785 900 855
8250 925 925 905 930 1020 970
...

...
...

...
...

...
...

Table 4. Put option prices of the Nikkei 225 index options with the lowest strikes
on Oct. 10, 2008 maturing in Nov. 2008 and Dec. 2008.

We remark that their method may cause a positive bias due to its inconsistency with the theoretical
asymptotic behavior of the volatility surface described by Lee (2004), where he obtained a model-free
bound σ(k) <

√
2|k| for large |k|. See also Lemma A.4 for a refinement of this bound. In order to be

consistent with Theorem 2.2 that gives a counterpart of those model-free bounds for our integration
scale, we choose a constant extrapolation as described in STEP 2-2.

Another source of approximation errors in (2.3) is the discretization of the integral with respect to K.
A continuous interpolation would be a more natural treatment since, in theory, P(K) = E[(K − ST)+] and
C(K) = E[(ST−K)+] are continuous functions. They are C1 if ST admits a density. Our algorithm employs
a C1-interpolation by cubic polynomials in the Black-Scholes implied volatility scale. The algorithm by
Jiang and Tian (2007) consists of the C2-interpolation and numerical integration with the original scale
(2.2). However, the C2-property of these functions is not guaranteed in general, and adhering to this may
cause undesirable oscillations. On the other hand, our C1-interpolation approach is expected to prevent
these oscillations, which is in fact required in the light of Theorem 2.2.

We proceed to integration in the same Black-Scholes implied volatility scale using the formula (1.1).
Since the integral is with the standard normal density, we can utilize the well-known identities for the
Hermite polynomial system to avoid numerical integration. The model-free formula (1.1) describes a
direct link between the expected quadratic variation and the curvature of the Black-Scholes implied
volatility surface that is familiar to practitioners.

To examine the extent to which our method indeed improves the approximation, let us consider the
Heston model:

dSt = St
√

Vt

[
ρdW1

t +

√
1 − ρ2dW2

t

]
,

dVt = λ(v − Vt)dt + η
√

VtdW1
t ,

(4.1)

where (W1,W2) is a two-dimensional standard Brownian motion. This model enables us to calculate
easily the theoretical call and put option prices and obtain the following explicit formula for the expected
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annualized quadratic variation:

(4.2)
1
T
E[〈log(S)〉T] =

1
T
E

[∫ T

0
Vtdt

]
= v +

1 − e−λT

λT
(V0 − v).

See, e.g., Gatheral (2006) for more details. Using artificial options data generated by the Heston pricing
formula, we evaluate the approximations in comparison to the true value of the expected quadratic
variation. We generate call and put option prices with the same set of strikes and nearest two maturities
as the above-mentioned options data on October 10, 2008. The first and second maturities falling in No-
vember and December correspond to T = 0.0951864535768645 and T = 0.171898782343988, respectively.
The initial price S0 of the underlying asset on October 10, 2008 is set to 8276.43 JPY and the interest rate
is set to 0. See Table 5 for the generated data for the first maturity. To further approach normal market
conditions, we randomize the bid-ask spread using geometric random variables with success probability
p = 0.8. The ask price is sampled so that it becomes the lowest price above the true value (consistent with
the tick-size used on the OSE) with probability p, and becomes the second lowest price with probability
(1 − p)p. It becomes the subsequent prices in the same geometric manner, and the bid price is chosen
similarly. We use the corresponding mid-quote price for each transaction price.

Table 6 shows the expected annualized quadratic variations and the approximated values by the CBOE
procedure and our method based on the following parameter sets:

Parameter Set A: λ = 1, v = 0.2, η = 0.5, ρ = −0.8 and V0 = 0.6;
Parameter Set B: λ = 1, v = 0.2, η = 1.0, ρ = −0.4 and V0 = 0.6;
Parameter Set C: λ = 5, v = 0.04, η = 1.0, ρ = −0.4 and V0 = 0.6;
Parameter Set D: λ = 1.5, v = 0.04, η = 0.3, ρ = −0.7 and V0 = 0.04.

The column “New” stands for the values resulting from the application of our new method. The
parameters in D are typical values obtained by calibrating on a regular day with instantaneous volatility√

V0 = 20%. Under this average volatility level, the tails of the distribution of ST are light, and hence
the approximation errors due to the cutting-off of tails are negligible. The main source of error lies in
the numerical integration and our method provides better numerical accuracy. The other specifications
A, B and C represent the market conditions at the onset of financial crises, with instantaneous volatility√

V0 ≈ 77%. The results are more striking. The CBOE method severely underestimates the expected
quadratic variation where our method is found to significantly improve the estimation accuracy.

5. New Volatility Index and Empirical evidence

In this section, we evaluate the in-sample forecasting performance of the volatility index from the
Nikkei 225 options based on the new method in comparison to that using the CBOE procedure. The op-
tions data were obtained from the Nikkei Economic Electronic Database System (NEEDS) FinancialQuest
database, and contain call and put option prices quoted at the close of trading days from December 22,
1997 to December 1, 2009 (2,935 trading days). Throughout this section, we denote by CSFI-VXJ2 our
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Call Put
strike ask theoretical bid ask theoretical bid
7250 1370 1361.58 1360 345 335.15 335
7500 1200 1197.41 1190 430 420.98 420
7750 1050 1046.16 1040 525 519.73 515
8000 915 907.99 905 640 631.56 630
8250 790 782.88 780 765 756.45 755
8500 675 670.56 665 910 894.13 890
8750 580 570.59 570 1050 1044.16 1040
9000 485 482.35 475 1210 1205.92 1200
9250 415 405.12 405 1380 1378.69 1370
9500 345 338.08 335 1570 1561.65 1560
9750 290 280.34 280 1760 1753.91 1750

10000 240 231.01 230 1960 1954.58 1950
10250 195 189.19 185 2170 2162.76 2060
10500 160 153.99 140 2380 2377.56 2370
10750 130 124.60 120 2610 2598.17 2590
11000 110 100.22 100 2830 2823.79 2820
11250 90 80.15 80 3060 3053.72 3050
11500 70 63.73 60 3290 3287.30 3280
11750 55 50.40 45 3540 3523.97 3520
12000 40 39.63 30 3770 3763.20 3760
12250 40 31.00 30 4010 4004.57 3900
12500 30 24.12 20 4250 4247.69 4140
12750 20 18.67 18 4500 4492.24 4290
13000 16 14.38 14 4740 4737.95 4730
13250 13 11.02 11 4990 4984.59 4980
13500 10 8.40 8 5240 5231.97 5230
13750 8 6.38 6 5480 5479.95 5370
14000 8 4.82 4 5730 5728.39 5720
14250 5 3.62 3 6000 5977.19 5970
14500 4 2.71 2 6230 6226.28 6120
15000 2 1.50 - 6730 6725.07 6720
15500 1 0.81 - 7240 7224.38 7220
16000 1 0.44 - 7740 7724.01 7720
16500 1 0.23 - 8230 8223.80 8220
17000 1 0.12 - 8730 8723.69 8720
17500 1 0.06 - 9230 9223.63 9120

Table 5. Artificial data with maturity November 2008 and parameter set A.



MODEL-FREE IMPLIED VOLATILITY: FROM SURFACE TO INDEX 15

2008/11 2008/12
Parameter True CBOE New True CBOE New

A 0.5816 0.4639 0.5767 0.5676 0.4041 0.5504
B 0.5816 0.4604 0.5692 0.5676 0.4023 0.5460
C 0.4856 0.3930 0.4633 0.4157 0.3112 0.4023
D 0.0400 0.0420 0.0408 0.0400 0.0378 0.0394

Table 6. Expected annualized quadratic variations.

volatility index and by VXJ2 the index computed based on the CBOE approach.1 Here, the values of
CSFI-VXJ2 and VXJ2 are measured as annualized 30-day quadratic variation, while the volatility indexes
usually refer to their square roots in percentage points.

Table 7 summarizes the descriptive statistics of the CSFI-VXJ2 and VXJ2 volatility indexes. The mean
value of CSFI-VXJ2 is close to that of VXJ2, but CSFI-VXJ2 has a slightly larger standard deviation than
VXJ2. The skewness and kurtosis moments indicate that both CSFI-VXJ2 and VXJ2 are not close to the
normal distribution. The large Ljung-Box statistics up to tenth order (LB(10)) indicate that the null
hypothesis of no autocorrelations is rejected.

For the sake of estimating market variance over the fixed expiration period of 30 days, we employ
ex-post realized variances using high-frequency data. These intraday measures of realized volatility are
usually found to provide more accurate variance estimates than those derived from lower-frequency
data such as daily, weekly or monthly observations. The NEEDS historical tick data include the intraday
Nikkei 225 stock average recorded every minute. The Tokyo Stock Exchange (TSE) where the Nikkei
225 index components are traded is open for 9:00-11:00 (morning session) and 12:30-15:00 (afternoon
session). In order to take into consideration the non-trading hours, we employ the adjustment introduced
by Hansen and Lunde (2005), using the past 441 daily returns and realized variances to estimate the
time-varying adjustment parameter.

In order to perform tests that are robust to the microstructure noise, we use as many as 15 estimators
of realized variance listed in Table 8. A more detailed description of these estimators is provided
in Appendix B. We summarize in Table 9 the descriptive statistics of annualized realized variances
computed over fixed periods of 30 days, consistent with the expiry of the hypothetical options underlying
the implied volatility indexes. The realized variances have lower means than the CSFI-VXJ2 and VXJ2

indexes, although the standard deviations are rather close to these volatility forecasts. The distribution of
realized variance is also found to be positively skewed and long-tailed. Judging from LB(10) values, there
are signs of autocorrelations. Figure 3 plots the time-series of market variance along with the CSFI-VXJ2

and VXJ2 indexes. There are sudden surges associated with significant economic and financial shocks
such as the Russian default and Long-Term Capital Management crises in 1998 and the U.S. housing and
credit crisis in 2008.

1We use these names because the same indexes are computed, updated and made available online to the public
under these titles by the Center for the Study of Finance and Insurance, Osaka University.
http://www-csfi.sigmath.es.osaka-u.ac.jp/structure/activity/vxj.php
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CSFI-VXJ2 VXJ2

Mean 0.0816 0.0822
Standard deviation 0.0824 0.0771
Minimum 0.0120 0.0133
Maximum 0.9454 0.8363
Skewness 4.90 4.55
Kurtosis 31.98 27.31
LB(10) 24432 25271

Table 7. Descriptive statistics of the CSFI-VXJ2 and VXJ2.

1. Realized variance with returns sampled at the highest frequencies, RV
2. Realized variance with 5-minute returns, RV5min

3. Realized variance with 15-minute returns, RV15min

4. Optimally-sampled realized variance as proposed in Bandi and Russell (2008), RVBR

5. The Bartlett kernel estimator in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2005)
with a finite sample optimal number of autocovariances
proposed by Bandi and Russell (in press), RVBK

BR
6. The two-scale estimator with an asymptotically optimal number of subsamples
proposed by Zhang, Mykland, and Aı̈t-Sahalia (2005), RVZMA

7. The two-scale estimator with a finite sample optimal number of subsamples
proposed by Bandi and Russell (in press), RVZMA

BR
8. The bias-corrected two-scale estimator with an asymptotically optimal number of
subsamples proposed by Zhang et al. (2005), RVBC−ZMA

9. The bias-corrected two-scale estimator with a finite sample optimal number of subsamples
proposed by Bandi and Russell (in press), RVBC−ZMA

BR
10. The flat-top Bartlett kernel estimator with an asymptotically optimal number of
autocovariances proposed by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), RVFBK

11. The flat-top Bartlett kernel estimator with a finite sample optimal number of
autocovariances proposed by Bandi and Russell (in press), RVFBK

BR
12. The flat-top cubic kernel estimator with an asymptotically optimal number of
autocovariances proposed by Barndorff-Nielsen et al. (2008), RVFCK

13. The flat-top cubic kernel estimator with a finite sample optimal number of
autocovariances proposed by Bandi and Russell (in press), RVFCK

BR
14. The flat-top modified Tukey-Hanning kernel estimator with an asymptotically
optimal number of autocovariances proposed by Barndorff-Nielsen et al. (2008), RVFMTH

15. The flat-top modified Tukey-Hanning kernel estimator with a finite sample optimal
number of autocovariances proposed by Bandi and Russell (in press), RVFMTH

BR

Table 8. List of estimators of realized variance using high-frequency data.
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Mean Standard error Minimum Maximum Skewness Kurtosis LB(10)
RV 0.0640 0.0806 0.0078 0.9334 7.10 61.12 25977
RV5min 0.0628 0.0819 0.0063 0.9346 7.03 60.09 25914
RV15min 0.0624 0.0928 0.0067 1.0650 7.21 61.30 26031
RVBR 0.0632 0.0870 0.0061 1.0066 7.37 65.08 25750
RVBK

BR 0.0628 0.0896 0.0064 1.0577 7.55 67.60 25685
RVZMA 0.0633 0.0871 0.0067 1.0265 7.30 63.67 25889
RVZMA

BR 0.0630 0.0907 0.0061 1.0684 7.50 66.92 25689
RVBC−ZMA 0.0643 0.0807 0.0064 0.9305 7.06 61.48 25695
RVBC−ZMA

BR 0.0634 0.0851 0.0062 0.9865 7.28 64.26 25663
RVFBK 0.0636 0.0834 0.0062 0.9601 7.15 62.43 25690
RVFBK

BR 0.0636 0.0845 0.0062 0.9762 7.23 63.51 25672
RVFCK 0.0636 0.0860 0.0061 0.9946 7.28 64.15 25664
RVFCK

BR 0.0635 0.0841 0.0062 0.9716 7.21 63.33 25670
RVFMTH 0.0636 0.0856 0.0062 0.9888 7.23 63.43 25697
RVFMTH

BR 0.0636 0.0841 0.0062 0.9694 7.15 62.41 25700

Table 9. Descriptive statistics of realized variances.
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Figure 3. Time-series of realized variance and implied variance indexes.
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A formal evaluation of forecasting performance of the various implied volatility indexes can be made
using the following regression model

V̂t = α + β IVt + ut,(5.1)

where V̂ and IV represent the annualized realized variance and implied variance, respectively. Table 10
reports the coefficient of determination R2 from the regression equation (5.1). Irrespective of the estimator
of realized variance used, the R2 values obtained using CSFI-VXJ2 are found to be higher than those
obtained using VXJ2. These results show that the CSFI-VXJ2 forecasts of return variability are more
accurate than those based on VXJ2.

Recall that the indexes are constructed as approximations of the expected quadratic variation. Al-
though the expectation is with respect to a risk-neutral measure, by assuming that it coincides with
the physical measure, we further assess the forecast error of CSFI-VXJ2 and VXJ2 using four loss func-
tions: the root mean squared error (RMSE), the root mean squared percentage error (RMSPE), the mean
absolute error (MAE) and the mean absolute percentage error (MAPE) defined, respectively, as

RMSE =

√
1
N

∑N
i=1(IV − V̂)2, RMSPE =

√√√
1
N

N∑
i=1

( IV − V̂
V̂

)2
,

MAE = 1
N

∑N
i=1 | IV − V̂ |, MAPE =

1
N

N∑
i=1

∣∣∣∣ IV − V̂
V̂

∣∣∣∣.
Here we use N = 2, 935 for the number of observations of realized variances and implied variance indexes
over the sample period. Table 11 displays the estimates of biases and the loss functions for CSFI-VXJ2

and VXJ2. The bias is always positive, but it is smaller in magnitude for CSFI-VXJ2 than for VXJ2. The
values of loss functions for CSFI-VXJ2 are uniformly smaller than those for VXJ2. Judging from these
results, the volatility index proposed in this paper provides a better approximation of short-term market
volatility and has a better forecasting performance than the index computed using the CBOE procedure.

6. Conclusion

This study proposes a new model-free approach to approximating the expected quadratic variations of
asset prices based on related options premia. The relation between quadratic variations and option prices
is model-free and it is illustrated within the framework of the familiar Black-Scholes implied volatility
scale. The new approximation method avoids numerical integration by taking advantage of the form
of the integral with respect to the standard normal density and using the polynomial interpolation of
the integrand. Based on this approach, a new volatility index is developed using the Nikkei 225 index
options. The new volatility benchmark provides good approximations of the true values generated under
the Heston stochastic volatility model. This is indicative of better numerical efficiency than alternative
approaches such as the CBOE procedure, which rely on discretization to evaluate integrals. Based
on various estimators of realized variance, the empirical evidence from market prices also suggests
that the new volatility index is associated with better forecast accuracy. The model-free formula for
the expected quadratic variations is thus conducive to the reduction of approximation errors and to
improved numerical efficiency and forecasting accuracy.
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market variance CSFI-VXJ2 VXJ2

RV 0.488 0.457
RV5min 0.501 0.471
RV15min 0.427 0.398
RVBR 0.482 0.451
RVBK

BR 0.460 0.430
RVZMA 0.448 0.417
RVZMA

BR 0.458 0.427
RVBC−ZMA 0.504 0.473
RVBC−ZMA

BR 0.491 0.459
RVFBK 0.501 0.469
RVFBK

BR 0.496 0.464
RVFCK 0.490 0.458
RVFCK

BR 0.497 0.465
RVFMTH 0.490 0.459
RVFMTH

BR 0.498 0.466

Table 10. Coefficients of determination R2 from regressions of realized variance
on implied variance indexes.
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Appendix A. Pricing formula for log contract

In this appendix, we give the proofs of Theorems 2.1 and 2.2. At first, let us observe that the
Black-Scholes implied volatility σ : R → [0,∞) is well-defined. The value PBS(k, σ) coincides with the
undiscounted version of the Black-Scholes put option price with strike K = Fek, maturity T and volatility
σ > 0. It is well-known that the Black-Scholes price is an increasing function of the volatility parameter.
Hence the inverse function PBS(k, ·)−1 is well-defined. Besides, it holds that

lim
σ→0

PBS(k, σ) = F(ek − 1)+ and lim
σ→∞

PBS(k, σ) = Fek.
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Because

(K − F)+ ≤ P(K) < K

for all K > 0 due to Jensen’s inequality, σ(k) is well-defined for all k ∈ R.
Since ST admits a density by assumption, we have

D(K) := E[K > ST] =
dP
dK

(K).

Notice that D is an increasing function of K. Let us suppose, for simplicity, that T = 1 hereafter. Let
DBS(K) be a function of K = Fek defined as

DBS(K) =
dPBS

dK
(log(K/F),Σ)|Σ=σ(log(K/F)) = Φ(−d2(k, σ(k))).

By definition,

D(K) =
dP
dK

(K)

=
d

dK
PBS(log(K/F), σ(log(K/F)))

= DBS(K) +
1
K
∂PBS

∂Σ
(log(K/F), σ(log(K/F)))

dσ
dk

(log(K/F))

= DBS(K) + φ(−d2(log(K/F), σ(log(K/F))))
dσ
dk

(log(K/F)).

(A.1)

Lemma A.1. For every k ∈ R, we have

−d2(k, σ(k))
dσ
dk

(k) < 1.

Proof: Put f (k) := −d2(k, σ(k)). The inequality is trivial when f (k) = 0. If f (k) > 0, it follows from (A.1)
that

f (k)
dσ
dk

(k) = f (k)
D(Fek) −DBS(Fek)

φ( f (k))
≤ f (k)

1 −Φ( f (k))
φ( f (k))

< 1.

Here we used the fact that 0 ≤ D(K) ≤ 1 by definition and a well-known estimate

(A.2) 1 −Φ(x) < x−1φ(x), x > 0.

For the case f (k) < 0, we have

f (k)
dσ
dk

(k) = f (k)
D(Fek) −DBS(Fek)

φ( f (k))
≤ − f (k)

Φ( f (k))
φ( f (k))

= − f (k)
1 −Φ(− f (k))
φ(− f (k))

< 1.

////

Lemma A.2. For all k with d1(k, σ(k)) ≥ 0, we have

−d1(k, σ(k))
dσ
dk

(k) < 1.
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Proof: By definition, it holds that for all K > 0,

KD(K) ≥ P(K).

Combining this and (A.1), we have

FΦ(−d1(k, σ(k))) + Kφ(−d2(k, σ(k)))
dσ
dk

(k) ≥ 0

with k = log(K/F). Since Kφ(−d2) = Fφ(−d1), we obtain by (A.2)

dσ
dk

(k) ≥ −1 −Φ(d1(k, σ(k)))
φ(d1(k, σ(k)))

> − 1
d1(k, σ(k))

.

////

Lemma A.3. The mapping k 7→ −d2(k, σ(k)) is increasing.

Proof: Put f (k) := −d2(k, σ(k)). By definition,

f (k) =
k
σ(k)

+
σ(k)

2
,

and therefore

(A.3)
d f
dk

(k) =
1
σ(k)

{
1 − dσ

dk
(k)

k
σ(k)

}
+

1
2

dσ
dk

(k) =
1
σ(k)

{
1 − dσ

dk
(k) f (k)

}
+

dσ
dk

(k).

Hence, by Lemma A.1, we have
d f
dk

(k) >
dσ
dk

(k).

It suffices then to treat the case dσ/dk < 0. By rewriting (A.3), we have

d f
dk

(k) =
1
σ(k)

{
1 +

dσ
dk

(k)d1(k, σ(k))
}
.

If d1(k, σ(k)) < 0, we have d f/dk > 0 under dσ/dk < 0. If d1(k, σ(k)) ≥ 0, we can use Lemma A.2 to obtain
the same inequality. ////

Lemma A.4. It holds for k ≥ 0 that

−d2(k, σ(k)) ≥
√

2k and
dσ
dk

(k) <
1√
2k
.

Moreover, there exists k∗ > 0 such that σ(k∗) =
√

2k∗ and it holds for all k > k0 ≥ k∗ that

σ(k) < σ(k0) −
√

2k0 +
√

2k ≤
√

2k.

Proof: The first inequality comes from the fact that the arithmetic mean exceeds the geometric mean.
The second follows from this and Lemma A.1. To consider the last claim, observe that

E[(ST − K)+] = E[(K − ST)+] + F − K = FΦ(d1(k, σ(k))) − KΦ(d2(k, σ(k)))

by definition, or “Call-Put Parity”. The left-hand side goes to 0 as K→∞ and by (A.2)

KΦ(d2(k, σ(k))) = Fekφ(−d2(k, σ(k)))
1 −Φ(−d2(k, σ(k)))
φ(−d2(k, σ(k))))

<
F

2
√
πk
→ 0 as k→∞.
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Hence d1(k) → −∞ as k → ∞, which implies that σ(k) <
√

2k for sufficiently large k. The last inequality
holds since

√
2k − σ(k) is increasing by the second inequality. ////

Here, notice that results similar to the previous lemma were obtained by Lee (2004) and Rogers and
Tehranchi (2010).

Lemma A.5. If there exists p > 0 such that S−p
T is integrable, then we have

(A.4) lim
k→±∞

σ(k)φ(d2(k, σ(k))) = 0 and lim
k→±∞

k
dσ
dk

(k)φ(d2(k, σ(k))) = 0.

Proof: By the results of Lee (2004), there exist k∗ < 0 and β ∈ (0, 2) such that

−σ(k)2

k
< β

for all k < k∗. It follows that

d2(k, σ(k)) = − k
σ(k)

− σ(k)
2
>

√
|k|
β
−

√
β|k|
2
=

2 − β
2
√
β

√
|k|.

With the aid of Lemma A.4, these estimates imply that φ(d2(k, σ(k))) decays exponentially fast as |k| → ∞
and that the first claim of (A.4) holds. To see the second claim, notice that by (A.1)

D(Fek) −DBS(Fek) = φ(−d2(k, σ(k)))
dσ
dk

(k),

so that it now suffices to show

lim
k→−∞

kD(Fek) = 0, lim
k→∞

k(1 −D(Fek)) = 0,

lim
k→−∞

kDBS(Fek) = 0, lim
k→∞

k(1 −DBS(Fek)) = 0.

The first-line equations follow from the integrability condition of ST, whereas the remaining two equa-
tions are obvious from the fact that DBS(Fek) = Φ(−d2(k, σ(k))). ////

Proof of Theorem 2.1: Since the second derivative of P coincides with the density of ST,

−2E[log(ST/F)] = −2
∫ ∞

0
log(K/F)

d2P
dK2 (K)dK

= −2
∫ ∞

−∞
k

d2P
dK2 (Fek)Fekdk.

By Lemma A.3, the inverse function g of d2 is well-defined. Using (A.1), we have

d2P
dK2 (Fek) =

dD
dK

(Fek)

=
1

Fek
φ(g−1(k))

{
−dg−1

dk
(k)

(
1 + g−1(k)

dσ
dk

(k)
)
+

d2σ

dk2 (k)
}

Since
d
dk
φ(g−1(k)) = −φ(g−1(k))g−1(k)

dg−1

dk
(k),
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we have

−
∫ ∞

−∞
kφ(g−1(k))g−1(k)

dg−1

dk
(k)

dσ
dk

(k)dk =
[
k

dσ
dk

(k)φ(g−1(k))
]∞
−∞

−
∫ ∞

−∞

{
dσ
dk

(k) + k
d2σ

dk2 (k)
}
φ(g−1(k))dk.

By (A.4), we obtain

−2E[log(ST/F)] = 2
∫ ∞

−∞
φ(g−1(k))

{
k

dg−1

dk
(k) +

dσ
dk

(k)
}

dk.

Since ∫ ∞

−∞
φ(g−1(k))

dσ
dk

(k)dk =
[
φ(g−1(k))σ(k)

]∞
−∞ +

∫ ∞

−∞
φ(g−1(k))g−1(k)σ(k)

dg−1

dk
(k)dk

and

k + g−1(k)σ(k) = k + d2(k, σ(k))σ(k) = −σ(k)2

2
by definition, we obtain

−2E[log(ST/F)] = −
∫ ∞

−∞
φ(g−1(k))σ(k)2 dg−1

dk
(k)dk =

∫ ∞

−∞
σ(g(z))2φ(z)dz.

Here we have used (A.4). ////

Proof of Theorem 2.2: The first inequality for the derivative of σ̂ follows from (A.3) and Lemma A.1.
The existence of z∗ is equivalent to the existence of k∗ in Lemma A.4. The other inequalities follow from
the fact that

k 7→ d2(k, σ(k))2 − d1(k, σ(k))2 = 2k

is an increasing function. ////

Appendix B. Realized variance estimators

Here, we start with a brief review of various estimators of realized variance employed in Section
5. It is assumed that the logarithmic equilibrium price follows a continuous semimartingale process
dp∗(s) = µ(s)ds+σ(s)dW(s), where µ(s) is a drift coefficient, W(s) is a standard Brownian motion, and σ2(s)
is the instantaneous variance of the equilibrium price p∗. We consider that the parameter of interest is

an integrated variance over the t-th trading day, [t, t + 1), defined as Vt :=
∫ t+1

t σ2
t dt. Throughout this

section, let E be the expectation operator under the physical measure.

B.1. RV: Realized variance with returns sampled at the highest frequencies. Let the i-th intraday price
on a day t be denoted by p(ti). One way to estimate the integrated variance V is to use the sum of squared
returns:

RV =
n∑

i=1

(
p(ti) − p(ti−1)

)2
,(B.1)

where n represents the number of observed intraday returns in [t, t+1). The estimator is generally called
realized variance or realized volatility. If p(ti) is equal to the equilibrium price p∗(ti), then RV provides a
consistent estimate of V.
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However, RV fails to satisfy the consistency condition when there is market microstructure noise as
usually documented in real high-frequency data. The microstructure noise can be induced by various
market frictions such as the discreteness of price changes, bid-ask bounces, and asymmetric information
across traders, inter alia. For the rest of this appendix, assume the i-th intraday return ri is contaminated
by microstructure noise as follows:

ri = p∗(ti) − p∗(ti−1)︸           ︷︷           ︸
r∗i

+ η(ti) − η(ti−1)︸          ︷︷          ︸
εi

(B.2)

where η represents microstructure noise. A growing literature attempts to examine different estimators
of integrated variance from microstructure noise-contaminated high-frequency data, including Zhang
et.al. (2005), inter alia.

B.2. RV5min and RV15min: Realized variance with 5- and 15-minute returns. Another classical method
uses the realized variance constructed from intraday returns sampled at moderate frequencies rather
than at the highest frequency because the realized variance with finer frequency is more sensitive to
microstructure noise. This approach can partially offset the bias induced by the microstructure effects. In
practice, researchers are necessarily forced to select a moderate sampling frequency. For example, it may
be regarded as around those frequencies for which realized variance signature plots under alternative
sampling frequencies are leveled off. Evidence from previous studies suggests that it is optimal to use 5
to 30-minute return data. Hence, we employ RV5min and RV15min which are equal to the sum of squared
5- and 15-minute returns.

B.3. RVBR: Optimally-sampled realized variance. There is a trade-offbetween the microstructure noise-
induced bias and variance reduction at high sampling frequencies. To take this trade-off into account,
Bandi and Russell (2008) provide a theoretical justification for the choice of optimal sampling frequency
based on the mean squared error (MSE) criterion. They derive the following approximation of the

optimal number of observations n∗ based on MSE minimization in a finite sample n∗ ≈
(

IQ
(E(ε2))2

) 1
3

, where

IQ represents an integrated quarticity of the equilibrium price process
(
IQ =

∫ T
0 σ

4(s)ds
)
. It is estimated

by realized quarticity ˆIQ = n
3
∑n

i=1 r4
i with low frequency returns such as 15-minute returns. Following

the consistent estimator of noise moment as shown by Bandi and Russell (2008), E(ε2) can be estimated

by Ê(ε2) = 1
n
∑n

i=1 r2
i at the highest frequency. Thus, RVBR is equal to RV with n̂∗ =

(
ˆIQ/

(
Ê(ε2)

)2)1/3
.

B.4. RVBK
BR : The Bartlett-type kernel estimator in Barndorff-Nielsen et al. (2005) with a finite sample

optimal number of autocovariances proposed by Bandi and Russell (in press). RV5min, RV15min and
RVBR have the obvious drawback that they do not incorporate all available observations, and useful
information may thereby be lost. The problem of estimating the integrated variance under microstructure
noise is similar to the autocorrelation corrections that are used in the estimation of long-run variance in
stationary time-series (see, for instance, Newey and West (1987) and Andrews (1991)). So it is natural to
consider kernel-based estimators of integrated variance under microstructure noise. Barndorff-Nielsen
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et al. (2005) examine the Bartlett-type kernel estimator defined as

RVBK =
(n − 1

n
H − 1

H

)
γ0 + 2

H∑
h=1

(H − h
H

)
γh,(B.3)

where γh =
∑n−h

i=1 riri+h is the h-th autocovariance of intraday returns and γ0 is equal to realized variance
using returns sampled at the highest frequencies. This estimator weights the realized variance and the
H-th return autocovariances by Bartlett weights. The optimal number of autocovariances is obtained
through MSE minimization in finite sample (see equations 7 to 10 in Bandi and Russell (in press) for the
exact MSE minimization expressions). There is a convenient rule-of-thumb for choosing H in practice

as proposed in Bandi and Russell (in press). The expression is obtained as HBR ≈
(

3V
2n2IQ

) 1
3 n. V and

IQ are estimated using realized variance and realized quarticity with lower frequency returns such as
15-minute returns. Hence, RVBK with finite-sample optimal number of autocovariances HBR leads to
RVBK

BR .

B.5. RVZMA: The two-scale estimator with an asymptotically optimal number of subsamples proposed
by Zhang et al. (2005). A two-scale or subsampling estimator is proposed by Zhang et al. (2005) in the
spirit of the estimation of the long-run variance studied by Carlstein (1986). Denote the original grid of
observation times as Ψ = {t0, t1, t2 . . . , tn}. Consider Ψ is partitioned into K̃ nonoverlapping subgrids,
Ψ

( j)
K̃
= {t j−1, t j−1+K̃, t j−1+2K̃, . . . }, j = 1, . . . , K̃, Then, the realized variance for the subgridΨ( j)

K̃
is defined as

RV( j)
K̃
=

n j∑
i=1

(
p(t( j−1)+iK̃) − p(t( j−1)+(i−1)K̃)

)2
.(B.4)

The two-scale estimator in Zhang et al. (2005) is given by

ZMA = (1/K̃)
K̃∑

j=1

RV( j)
K̃
− (n̄/n)RV,(B.5)

where n̄ = (n − K̃ + 1)/K̃ and RV is the realized variance for the full grid Ψ. The second term corrects
the bias in the first term. The asymptotic optimal number of subsamples K̃ZMA derived by minimizing

the estimator’s asymptotic variance is given by K̃ZMA =
(

3(E(ε2))2

IQ

)1/3
n2/3. IQ and E(ε2) are estimated by

realized quarticity with 15-minute returns and Ê(ε2) = 1
n
∑n

i=1 r2
i at the highest frequency, respectively.

Thus, ZMA with K̃ZMA leads to RVZMA.

B.6. RVZMA
BR : The two-scale estimator with a finite-sample optimal number of subsamples proposed

by Bandi and Russell (in press). Barndorff-Nielsen et al. (2005) show that the two-scale estimator is
almost identical to the modified Bartlett kernel estimator. Bandi and Russell (in press) additionally show
that the finite sample MSEs of RVBK and ZMA are very similar in practice. Hence, the ZMA with K̃ = HBR

is represented by RVZMA
BR .
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B.7. RVBC−ZMA: The bias-corrected two-scale estimator with an asymptotically optimal number of
subsamples proposed by Zhang et al. (2005). The two-scale estimator ZMA has a finite-sample bias as
shown in Zhang et al. (2005) who provide an approximate correction for this bias. On the other hand,
Bandi and Russell (in press) report the exact bias-correction form. The bias-corrected estimator can be
defined, following a suggestion by Bandi and Russell (in press), as

BC(ZMA) = c(K̃, n)ZMA, c(K̃, n) =
( K̃n − 1 + 2K̃ − K̃2 − n

K̃n

)−1
.(B.6)

Since BC(ZMA) is asymptotically equivalent to ZMA, the asymptotically optimal number of subsamples
is given by K̃ZMA. Thus, BC(ZMA) with K̃ZMA can be described by RVBC−ZMA.

B.8. RVBC−ZMA
BR : The bias-corrected two-scale estimator with a finite-sample optimal number of sub-

samples proposed by Bandi and Russell (in press). Since BC(ZMA) is unbiased in a finite-sample, the
optimal number of subsamples is provided by minimizing the finite-sample variance of BC(ZMA). Bandi
and Russell (2008, in press) show that the optimal number of subsamples is defined as

K̃BR = arg min
0<K̃/n≤1/2

[
Var

(
BC(ZMA)

)]
= arg min

0<K̃/n≤1/2

[(
c(K,n)

)2
Var(ZMA)

]
,(B.7)

where Var(ZMA) can be expressed in equation 6 of Bandi and Russell (2008). Hence, BC(ZMA) with K̃BR

can be represented by RVBC−ZMA
BR .

B.9. RVFBK: The flat-top Bartlett kernel estimator with an asymptotically optimal number of autoco-
variances proposed by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008). Barndorff-Nielsen et
al. (2008) examine the following unbiased flat-top kernel type estimator (called realized kernel)

RK = γ0 +

H∑
h=1

k(x)(γh + γ−h),(B.8)

where the non-stochastic k(x) ∈ [0, 1] for x = h−1
H is a weight function and γh =

∑n
i=1 riri−h with h =

−H, · · · ,H. The flat-top Bartlett kernel estimator is equivalent to RK in case where k(x) = 1 − x. For
this class of kernels, Barndorff-Nielsen et al. (2008) show that the asymptotic distribution of RK − V is
mixed normal with zero mean and rate of convergence n1/6 when H = cn2/3 where c is a constant. Then,
the asymptotically optimal value of c which minimizes the asymptotic variance is given by c∗ ≈ 2.28ξ

4
3 ,

where ξ2 = σ2
η/
√

IQ. Hence, RK with k(x) = 1 − x and H = c∗n2/3 corresponds to RVFBK.

B.10. RVFCK and RVFMTH: The flat-top cubic kernel estimator and the flat-top modified Tukey-Hanning
kernel estimator with an asymptotically optimal number of autocovariances proposed by Barndorff-
Nielsen et al. (2008). The estimators based on the cubic kernel and the modified Tukey-Hanning kernel
are equivalent to RK with k(x) = 1− 3x2 + 2x3 and k(x) = {1− cosπ(1− x)2}/2. When H = cn1/2, RK for this
class of kernels is consistent at the rate of convergence n1/4 as shown in Barndorff-Nielsen et al. (2008).
The asymptotically optimal value of c is expressed as

c∗ =

√√√
ρ

k1,1
•

k0,0
•

{
1 +

√
3k0.0
• k2,2
•

ρ(k1,1
• )2

}
,(B.9)
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where ρ = V/
√

IQ, k0,0
• =

∫ 1
0 k(x)2dx, k1,1

• =
∫ 1

0 k′(x)2dx and k2,2
• =

∫ 1
0 k′′(x)2dx, where the primes represent

derivatives. The values of (k0,0
• , k

1,1
• , k

2,2
• ) amount to (k0,0

• , k
1,1
• , k

2,2
• ) = (0.371, 1.20, 12.0) for cubic kernel and

(k0,0
• , k

1,1
• , k

2,2
• ) = (0.219, 1.71, 41.7) for modified Tukey-Hanning kernel. We define RVFCK and RVFMTH as

RK with H = c∗n1/2 at k(x) = 1 − 3x2 + 2x3 and k(x) = {1 − cosπ(1 − x)2}/2.

B.11. RVFBK
BR , RVFCK

BR and RVFMTH
BR : The flat-top Bartlett kernel estimator, the flat-top cubic kernel

estimator and the flat-top modified Tukey-Hanning kernel estimator with a finite-sample optimal
number of autocovariances proposed by Bandi and Russell (in press). Bandi and Russell (in press)
provide an alternative way to choose the number of autocovariances in finite samples. Denote H as φn
with 0 < φ ≤ 1. The optimal value of φ is defined as

φ∗ = arg min
0<φ≤1

[
(bias(RK))2 + Var(RK)

]
,(B.10)

where bias(RK) = 0 and Var(RK) can be expressed in Theorem 3 of Bandi and Russell (in press). Thus,
RK with H = φ∗n for Bartlett kernel, cubic kernel and modified Tukey-Hanning kernel leads to RVFBK

BR ,
RVFCK

BR and RVFMTH
BR , respectively.
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