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ASYMPTOTIC ANALYSIS FOR STOCHASTIC VOLATILITY:
EDGEWORTH EXPANSION

MASAAKI FUKASAWA

Abstract. The validity of singular perturbation expansion of the European op-
tion prices for a general fast mean-reverting stochastic volatility model is proved
in the light of the Edgeworth expansion for ergodic diffusions. The Edgeworth
expansion is validated for a broad class of triangular arrays of regenerative func-
tionals. The validation procedure does not depend on the stationarity nor the
geometric mixing property. The Heston model is treated as an example.
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1. Introduction

The stochastic volatility model is a continuous-time limit of the ARCH model
and a reasonable generalization of the Black-Scholes model. The plausible advan-
tage of this model is the fact that it explains an empirical phenomenon known as
the volatility smile or skew. See e.g., Heston[15], Hull and White [16], Renault
and Touzi [25] for the detail. Unfortunately, no simple option pricing formula has
been available in a general stochastic volatility model ( see Heston [15], Nicolato
and Venardos [22] for exceptional cases ), which apparently causes difficulties in
practical use. To overcome such a disadvantage, an asymptotic expansion is one
of standard approaches. For example, Yoshida [27] established a small diffusion
expansion and his method was utilized by Osajima [23] to validate an asymptotic
expansion formula for the SABR model developed by Hagan, Kumar, Lesniewski
and Woodward [13]. Masuda and Yoshida [21] applied the Edgeworth expansion
for geometric mixing processes to a stochastic volatility model. Introducing a two
time scales model, namely, the so-called fast mean-reverting stochastic volatility
model, Fouque, Papanicolaou and Sircar [8] gave a singular perturbation expan-
sion and its applications. Fouque, Papanicolaou, Sircar and Solna [10] extended
this to a multiscale model. The validity of the singular perturbation expansion was
proved by Fouque, Papanicolaou, Sircar and Solna [9], Conlon and Sullivan [5]
for the European call option price in a model based on the Ornstein-Uhlenbeck
process. Khasminskii and Yin [18] proved the validity in case that the volatility
is an ergodic diffusion on a compact set. The aim of this article is to prove the
validity for a broader class of ergodic diffusions. In particular, we incorporate the
Heston model, which is beyond the preceding studies. Besides, we deal with the
European option prices with a general payoff function including digital options.
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Our approach is quite different to the preceding studies; we exploit the Edgeworth
expansion for ergodic diffusions.

The Edgeworth expansion is a refinement of the central limit theorem and has
played an important role in statistics. There are three approaches to validate the
Edgeworth expansion for ergodic continuous-time processes. Martingale approach
and mixing approach developed by Yoshida [28] and Yoshida [29] respectively are
widely applicable to general continuous-time processes. Regenerative approach
developed by Fukasawa [12] is applicable only to strong Markov processes but
requires a weaker condition of ergodicity. We exploit the last one because em-
pirical studies such as Andersen, Bollerslev, Diebold and Labys [1] showed that
the volatility is “very slowly mean-reverting”, that is, the autocorrelation function
decays slowly. As a result, we do not need to require that the volatility is geometri-
cally mixing. This article extends the results of Fukasawa [12] to triangular arrays
of additive functionals. This generalization is rather complicated but straightfor-
ward; therefore we defer this to Section 3.

2. Fast mean-reverting model

2.1. Review. Here we review an asymptotic theory for the stochastic volatility
model developed by [8, 9]. The main result of this article is described in the next
subsection. In [8], a family of the stochastic volatility models

(2.1)

 dS ε
t = rS ε

t dt + f (Xε
t )S ε

t dWρ
t ,

dXε
t =

(
1
ε (m − Xε

t ) − ν
√

2√
ε
Λ(Xε

t )
)

dt + ν
√

2√
ε

dWt

is considered, where W = (Wt) and Wρ = (Wρ
t ) are standard Brownian motions

with correlation 〈W,Wρ〉t = ρt, ρ ∈ [−1, 1]. For fixed ε > 0, S ε = (S ε
t ) is supposed

to be the asset price process under risk neutral measure and r ∈ R is risk-free rate.
Other parameters m, ν are constants, f is a positive function, and Λ is associated
with the market price of volatility risk. For a given payoff function h and maturity
T ∗, the European option price at time t < T ∗

(2.2) Pε(t, s, v) = e−r(T ∗−t)P[h(S ε
T ∗)|S ε

t = s, Xε
t = v]

satisfies

(2.3)
(
1
ε
L0 +

1
√
ε
L1 +L2

)
Pε = 0, Pε(T ∗, s, v) = h(s)

where

L0 = ν
2 ∂

2

∂v2 + (m − v)
∂

∂v

L1 =
√

2ρνs f (v)
∂2

∂s∂v
−
√

2νΛ(v)
∂

∂v
,

L2 =
∂

∂t
+

1
2

f (v)2s2 ∂
2

∂s2 + r(s
∂

∂s
− 1).

(2.4)
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Notice that L0 is the infinitesimal generator of the OU process

(2.5) dXt = (m − Xt)dt + ν
√

2dWt

and L2 is the Black-Scholes operator with volatility level f (v). By a singular per-
turbation expansion around ε = 0, one obtains

(2.6) Pε = P0 +
√
εP1 + O(ε),

where P0 is the Black-Scholes price with constant volatility
√
π[ f 2], π is the er-

godic distribution of the process X = (Xt), and P1 is represented in terms of deriva-
tives of P0 and several expectations with respect to π. More precisely, [8] gave an
expression

(2.7) P0 +
√
εP1 = P0 − (T ∗ − t)

(
V2s2 ∂

2P0

∂s2 + V3s3 ∂
3P0

∂s3

)
,

where V2 and V3 are constants depending on ε. The validity of the expansion (2.6)
is proved in [9] ( see also [5, 18] ) under the assumption that h is continuous and
piecewise smooth, and f , 1/ f , Λ are bounded. In terms of modeling, however, this
assumption seems too restrictive in that it rules out common stochastic volatility
models such as the Heston model. Also, the continuity condition of h is not satis-
fied when considering digital options. The aim of the present article is to show that
these assumptions of boundedness and smoothness are totally unnecessary. Our
approach is quite different to the singular perturbation expansion. It sheds light on
the relation between the option price and the underlying price distribution.

Before we state our result, it should be explained what is the intuition of ε → 0
and how we can apply the expansion (2.6) in practice. To fix ideas, let Λ = 0 for
brevity. Then X̃t := Xε

εt satisfies

(2.8) dX̃t = (m − X̃t)dt + ν
√

2dW̃t,

where W̃t = ε
−1/2Wεt is a standard Brownian motion, and it holds

(2.9) dS ε
t = rS ε

t dt + f (X̃t/ε)S ε
t dWρ

t .

Hence ε stands for the volatility time scale. Note that
(2.10)

〈log(S ε)〉t =
∫ t

0
f (X̃s/ε)2ds = ε

∫ t/ε

0
f (X̃s)2ds ∼ ε

∫ t/ε

0
f (Xs)2ds→ π[ f 2]t

by the law of large numbers for ergodic diffusion, where X = (Xt) is a solution of
(2.5). This convergence implies the log price log(S ε

t ) is asymptotically normally
distributed with mean rt−π[ f 2]t/2 and variance π[ f 2]t. This asymptotic argument
is a quite plausible way of reducing a general stochastic volatility model to the
Black-Scholes model by exploiting the ergodicity of the volatility process which is
widely accepted. It should yield a valid approximation as long as the time to the
expiration T ∗ − t is large enough for the volatility process to fluctuate sufficiently.

As a practical application, in [8], the authors proposed its use in calibration
problem. They derived an expansion of the Black-Scholes implied volatility (IV)
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from (2.6) of the form

(2.11) IV = a
log(K/S )

T ∗ − t
+ b + O(ε),

where K is the strike price, S is the stock price, T ∗ − t is the time to the maturity, a
and b are constants connecting to V2 and V3 as

(2.12) V2 = σ̄((σ̄ − b) − a(r +
3
2
σ̄2)), V3 = −aσ̄3, σ̄2 = π[ f 2].

The methodology they introduced consists of (a) estimation of σ̄ from historical
stock returns, (b) estimation of a and b by fitting (2.11) to the implied volatility
surface, and (c) pricing or hedging by using estimated σ̄, a and b via (2.7) and
(2.12). This approach captures the volatility skew as well as the term structure.
It enables us to calibrate fast and stably due to parsimony of parameters; we have
no more need to specify all the parameters in the underlying stochastic volatility
model. As we show later, the fist step (a) can be eliminated and the validity of the
expansion is assured in theory for a quite large class of stochastic volatility models.

2.2. Main results. Now, we describe a generalized model and the main results of
this article. We consider the following stochastic differential equation;

(2.13)

 dZt = µ(Xt)dt + ϕ(Xt)dWt + ψ(Xt)dW′t ,
dXt = b(Xt)dt + c(Xt)dWt,

where Zt = log(S t) is the log price process, µ, ϕ, ψ, b and c are Borel functions, and
(W,W′) is a 2-dimensional standard Brownian motion. We introduce the volatility
time scale parameter ε as

(2.14)

 dZεt = µ(Xt/ε)dt + ϕ(Xt/ε)dWε
t + ψ(Xt/ε)dW′εt ,

dXt = b(Xt)dt + c(Xt)dWt,

where (Wε ,W′ε) is a 2-dimensional standard Brownian motion defined as

(2.15) Wε
t = ε

1/2Wt/ε , W′εt = ε
1/2W′t/ε .

Putting Xε
t = Xt/ε , we have

(2.16)

 dZεt = µ(Xε
t )dt + ϕ(Xε

t )dWε
t + ψ(Xε

t )dW′εt ,
dXε

t = ε
−1b(Xε

t )dt + ε−1/2c(Xε
t )dWε

t .

It is then natural to assume that (Zε , Xε) satisfies under risk-neutral measure Pε

with constant risk-free rate r the following stochastic differential equation

dZεt =
{

r −
ϕ(Xε

t )2 + ψ(Xε
t )2

2

}
dt + ϕ(Xε

t )dWε
t + ψ(Xε

t )dW′εt ,

dXε
t = ε

−1(b(Xε
t ) − Λε(Xε

t ))dt + ε−1/2c(Xε
t )dWε

t ,

(2.17)

where Λε represents the market price of volatility risk and is supposed to be o(1)
as ε → 0 in a sense specified later. In particular, we set Λ0 = 0. Note that even if
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Λε(v) = λ(v) + o(1) for a Borel function λ, the following argument remains valid
by incorporating λ in b. Notice that the case of

ϕ(v) = ρ f (v), ψ(v) =
√

1 − ρ2 f (v),

b(v) = m − v, c(v) = ν
√

2, Λε(v) = ν
√

2εΛ(v)
(2.18)

in (2.17) is equivalent to the original fast mean-reverting model (2.1). By rewriting
(2.17) for X with initial condition Zε0 = 0, we have

Zεt =rt − ε
2

∫ t/ε

0
{ϕ(Xs)2 + ψ(Xs)2}ds

+
√
ε

∫ t/ε

0
ϕ(Xs)dWs +

√
ε

∫ t/ε

0
ψ(Xs)dW′s

(2.19)

and

(2.20) dXt = bε(Xt)dt + c(Xt)dWt,

where bε = b − Λε .

Condition 2.1. The Borel functions ϕ, ψ, bε , c are defined on R, supε≥0 |bε | is
locally integrable, and ϕ, ψ, c and 1/c are locally bounded.

Under Condition 2.1, put

(2.21) γ := − lim sup
|v|→∞,ε→0

vbε(v)
c(v)2 .

For example, γ = ∞ in the OU case (2.5). Note that if

(2.22) lim inf
|v|→∞

|v|p−2c(v)2 > 0

for p ≥ 0 and 2γ > p − 1, then the volatility process X is ergodic for each fixed ε
with ergodic distribution

(2.23) πε(dv) =
cε

c(v)2 exp
{

2
∫ v

0

bε(w)
c(w)2 dw

}
dv,

where cε is a constant:

(2.24)
1
cε
=

∫ ∞

−∞

1
c(v)2 exp

{
2
∫ v

0

bε(w)
c(w)2 dw

}
dv.

This is a simple consequence of a well-known fact that a one-dimensional diffusion
is ergodic if its invariant distribution has finite total mass and if sε(R) = R, where

(2.25) sε(v) =
1
cε

∫ v

0
exp

{
−2

∫ u

0

bε(w)
c(w)2 dw

}
du.

See e.g. [26] for the detail. We need the following stronger assumption of the
ergodicity.
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Condition 2.2. Condition 2.1 is satisfied and there exists p ≥ 0 such that

(2.26) 2γ + 1 > 4p, lim sup
|v|→∞

1 + ϕ(v)2 + ψ(v)2

|v|p−2c(v)2 < ∞.

If ϕ and ψ are of polynomial growth, we can see that the above assumption
is satisfied by strongly dependent ergodic diffusions beyond exponentially mixing
diffusions such as the OU process ( see [12] ). Put

(2.27) Fϕ(x) =
∫ x

0

ϕ(v)
c(v)

dv, LεX = bε(v)
∂

∂v
+

1
2

c(v)2 ∂
2

∂v2 .

Condition 2.3. At least one of ϕ and ψ is not identically 0 and there exists a closed
interval I ⊂ R such that

(1) F′ϕ = ϕ/c is absolutely continuous on R,
(2) L0

XFϕ and ϕ2 are continuous on I
(3) if ϕ . 0, then 1,L0

XFϕ and ϕ2 + ψ2 are linearly independent on I,
(4) LεXFϕ converges to L0

XFϕ uniformly on I as ε → 0,
(5) if ψ . 0, then infI ψ

2 > 0 and ψ2 is continuous on I.

Theorem 2.1. Under Conditions 2.2 and 2.3, the European option price (2.2) of a
bounded payoff function h with S ε = exp Zε satisfies

(2.28) Pε(t, s, v) = P0(t, s) +
√
εP1(t, s) + O(ε)

for every t, s, v, where

(2.29) P0(t, s) = e−r(T ∗−t)
∫

h(s exp((r − σ2/2)(T ∗ − t) + σ
√

T ∗ − tz))φ(z)dz

is the Black-Scholes price with volatility

(2.30) σ2 = σ2
ε = πε[ϕ

2] + πε[ψ2],

and

P1(t, s) = e−r(T ∗−t)
∫

h(s exp((r − σ2/2)(T ∗ − t) + σ
√

T ∗ − tz))

φ(z)
{
− δ

σ2 (z2 − 1) +
δ

σ3
√

T ∗ − t
(z3 − 3z)

}
dz,

(2.31)

where

(2.32) δ = −
∫ ∞

−∞

∫ x

−∞
(ϕ(v)2 + ψ(v)2 − σ2)πε(dv)

ϕ(x)
c(x)

dx.

Proof Assume without loss of generality that t = 0. Fix the maturity T ∗ and put
T = T ∗/ε. Define σ as (2.30). Let

(2.33) KT
t =

(∫ t

0
(ϕ2(Xs) + ψ2(Xs) − σ2)ds,

∫ t

0
ϕ(Xs)dWs +

∫ t

0
ψ(Xs)dW′s

)
and

(2.34) AT (x, y) =
√

T ∗y − T−1/2T ∗x/2.
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Observe that
√

T AT (KT
T /T ) =

√
T ∗

T

(∫ T

0
ϕ(Xt)dWt +

∫ T

0
ψ(Xt)dW′t

)
− T∗

2T

∫ T

0
(ϕ2(Xt) + ψ2(Xt) − σ2)dt

=
√
ε

(∫ T ∗/ε

0
ϕ(Xt)dWt +

∫ T ∗/ε

0
ψ(Xt)dW′t

)
− ε

2

∫ T ∗/ε

0
(ϕ2(Xt) + ψ2(Xt) − σ2)dt,

(2.35)

so that from (2.19),

(2.36) h(S ε
T ∗) = H(

√
T AT (KT

T /T ))

with

(2.37) H(z) = h(s exp((r − σ2/2)T ∗ + z)).

Now, let [x0, x1] = I, say, and Px0[·] = Pε[·|X0 = x0]. Define a sequence of
stopping times {τ j} as

(2.38) τ0 = 0, τ j+1 = inf

t > τ j; Xt = x0 sup
s∈[τ j,t]

Xs ≥ x1

 .
The proof exploits the fact that KT = {KT

t } is decomposed by {τ j} into a sum of
independent variables due to the strong Markov property of X. We use also the
following well-known fact; for every πε-integrable function g, it holds

(2.39) πε[g] =
1

Px0[τ1]
Px0

[∫ τ1

0
g(Xt)dt

]
, Px0[τ1] = 2|sε(x1) − sε(x0)|.

See e.g., [26] for the detail. Applying Theorem 3.1, Propositions 4.2, 4.4 and 4.7
below, we obtain the Edgeworth expansion

(2.40) Pε(t, s, v) =
∫

H(z)
{
φ(z; vT ) − T ∗δ

√
ε∂3φ(z; vT )

}
dz + O(ε),

where φ(·; vT ) is the normal density with mean 0, variance vT which admits

vT = −
√
εT ∗

Px0[τ1]
Px0

[∫ τ1

0
ϕ(Xt)dWt

∫ τ1

0
(ϕ(Xt)2 + ψ(Xt)2 − σ2)dt

]
+

T ∗

Px0[τ1]
Px0

[∫ τ1

0
(ϕ(Xt)2 + ψ(Xt)2)dt

]
+ O(ε)

(2.41)

and

δ =
1

6Px0[τ1]
Px0

(∫ τ1

0
ϕ(Xt)dWt +

∫ τ1

0
ψ(Xt)dW′t

)3
− 1

2Px0[τ1]2 Px0

[
τ1

∫ τ1

0
ϕ(Xt)dWt

]
Px0

[∫ τ1

0
(ϕ(Xt)2 + ψ(Xt)2)dt

]
.

(2.42)
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Since

(2.43) σ2 =
1

Px0[τ1]
Px0

[∫ τ1

0
(ϕ(Xt)2 + ψ(Xt)2)dt

]
,

we have

(2.44) δ =
1

2Px0[τ1]
Px0

[∫ τ1

0
ϕ(Xt)dWt

∫ τ1

0
(ϕ(Xt)2 + ψ(Xt)2 − σ2)dt

]
by Itô’s formula. Hence vT = σ2T ∗ − 2δT ∗

√
ε +O(ε). In order to see (2.32) holds,

use Itô’s formula to have

(2.45)
∫ τ1

0
(ϕ(Xt)2 + ψ(Xt)2 − σ2)dt = −

∫ τ1

0
g(Xt)c(Xt)dWt,

where

(2.46) g(ξ) = 2(sε)′(ξ)
∫ ξ

−∞
(ϕ(η)2 + ψ(η)2 − σ2)πε(dη),

and then, use the Itô identity. Taylor expanding (2.40) with vT around σ2T ∗, we
have the result. ////

In order to deal with ϕ, ψ and 1/c2 of exponential growth, it is however more
suitable to work with the following condition. Put

(2.47) γ+ = − lim sup
v→∞,ε→0

bε(v)
c(v)2 , γ− = lim inf

v→−∞,ε→0

bε(v)
c(v)2 .

For example, γ+ = γ− = ∞ for the OU case (2.5). Note that if both γ+ and γ− are
positive, then γ = ∞, so that the positivity of γ± implies that the diffusion is more
strongly mean-reverting.

Condition 2.4. Condition 2.1 is satisfied and there exist κ+, κ− > 0 such that

(2.48) γ± > 2κ±, lim sup
v→±∞

1 + ϕ(v)2 + ψ(v)2

eκ± |v|c(v)2 < ∞.

Theorem 2.2. Under Conditions 2.3 and 2.4, the same conclusion holds as in
Theorem 2.1.

The proof of Theorem 2.2 is the same as that for Theorem 2.1. It is now straight-
forward to obtain the following corollary.

Corollary 2.3. The put option price (2.2) with h(s) = (K − s)+ admits the valid
expansion

(2.49) Pε(t, s, v) = P0(t, s;σ,K) − δ
√
ε

σ2 sφ(d1)d2 + O(ε),

where

(2.50) P0(t, s;σ,K) = Ke−r(T ∗−t)N(−d2) − sN(−d1)

is the Black-Scholes price with volatility σ of (2.30) and

(2.51) d1 =
log(s/K) + (r + σ2/2)(T ∗ − t)

σ
√

T ∗ − t
, d2 = d1 − σ

√
T ∗ − t.
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In particular, the implied volatility IV admits the valid expansion

(2.52) IV = σ − δ
√
εd2

σ2
√

T ∗ − t
+ O(ε).

Note that the call option price is also expanded in the light of the well-known
put-call parity. We assume only the boundedness on h, so that the digital options
can be treated; it has not been proved so far that the digital option prices admit the
singular perturbation expansion even in the OU case (2.1). Using (2.52), which has
the form (2.11), one can calibrate the two parameters σ and δ

√
ε from an observed

volatility surface. This approach is an alternative to the methodology (a),(b),(c)
described above; one can omit the step (a) requiring the use of historical data.
In case that bε = b −

√
εΛ for a Borel function Λ with a suitable integrability

condition, it could be deduced

(2.53) σε = σ̄ +
√
εa + O(ε)

with

(2.54) σ̄2 = π0[ϕ2 + ψ2], a =
1
σ̄

∫ ∞

−∞

∫ x

−∞
(ϕ(v)2 + ψ(v)2 − σ̄2)π0(dv)

Λ(x)
c(x)2 dx.

Hence Λ induces a volatility level correction as noted in [8]. It is now straight-
forward to see our expansion is consistent to [8] with V2 = 2V3 − σ̄a

√
ε and

V3 = −δ
√
ε.

It should be noted that δ is proportional to the asymptotic skewness of the log
return distribution, which is easily seen in the expression (2.31). In addition, we
can see from (2.31) that δ controls also the fatness of the distribution tail. The
relation among the return distribution, option prices and the parameters of the sto-
chastic model was studied in [15] for the Heston model. Although the second-
order expansion explains only the volatility skew as noted in [8], it is possible to
incorporate the volatility smile by studying the next term of O(ε). The Edgeworth
theory developed in the next section could be extended to admit the higher-order
expansion given a suitable moment condition. However, we restrict ourselves to
the second-order case in order to avoid tedious calculation.

Example 2.4. Consider the following fast mean-reverting Heston model

(2.55)

 dS ε
t = S ε

t (rdt +
√

Vε
t (ρdWt +

√
1 − ρ2dW′t ))

dVε
t = −ε−1(aVε

t − b)dt + ε−1/2c
√

Vε
t dWt

for positive constants a, b, c. We assume 2b > c2 so that Vε is ergodic for each
ε > 0. Since Vε stays on the half line (0,∞), we cannot apply directly the preceding
theorems. Put Xε = log(Vε) therefore. Use Itô’s formula to have

(2.56) dXε
t = −ε−1(a − (b − c2/2)e−Xε

t )dt + ε−1/2ce−Xε
t /2dWt,

or equivalently, Xt = Xε
εt satisfies

(2.57) dXt = −(a − (b − c2/2)e−Xt )dt + ce−Xt/2dWt.
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Then, Condition 2.4 holds with

(2.58) γ+ = ∞, γ− =
b
c2 −

1
2
, κ+ = 2, k− = 0.

Applying Theorem 2.2, we assure the validity of the expansion formula (2.31) with

(2.59) σ2 =
b
a
, δ =

ρbc
2a2 .

Here we used the fact that the the ergodic distribution of Vε is the gamma distribu-
tion with scale 2a/c2 and shape 2b/c2; the calculation seems correct though (2.59)
contradicts (5.10) of [19].

Example 2.5. Consider

(2.60)

 dS ε
t = S ε

t (rdt +
√

Vε
t (ρdWt +

√
1 − ρ2dW′t ))

dVε
t = −ε−1(aVε

t − b)dt + ε−1/2c|Vε
t |αdWt

for positive constants a, b, c and α ∈ (1/2, 1]. Since the scale function sV of Vε

satisfies sV ((0,∞)) = R, we can apply Itô’s formula to Xε = log(Vε) as in the
preceding example to have

(2.61) dXε
t = −ε−1(a − be−Xε

t + c2e−2(1−α)Xε
t /2)dt + ε−1/2ce−(1−α)Xε

t dWt.

If α < 1, then Condition 2.4 holds with

(2.62) γ± = ∞, κ+ = 3 − 2α, k− = 0.

If α = 1, it holds with

(2.63) γ+ =
a
c2 +

1
2
, γ− = ∞ κ+ = 1, k− = 0

provided that 2a > 3c2.

3. Edgeworth expansion for regenerative functionals

3.1. Conditions and a general result. In this section, we develop an Edgeworth
theory for triangular arrays of general regenerative functionals, which extends [12].
Additive functionals of ergodic diffusions are treated in the next section as an ap-
plication. Let PT = (ΩT ,F T , {FT

t }, PT ), T > 0 be a family of filtered probability
spaces satisfying the usual assumptions and KT = (KT

t ) be an {FT
t }-adapted cadlag

process defined on PT . Denote by PT
t [·] the conditional expectation operator given

FT
t . For a given sequence of increasing {FT

t }-stopping times {τT
j } with τT

0 = 0,
τT

j → ∞ as j→ ∞, put

(3.1) KT
j =

(
KT

j,t

)
t≥0

, KT
j,t = KT

t+τT
j
− KT

τT
j
, lTj = τ

T
j+1 − τT

j , j = 0, 1, 2, . . .

We say that KT is a regenerative functional if there exists such a sequence {τT
j }

that
(a) (KT

j , l
T
j ) is independent to FT

τT
j

for each j = 1, 2, . . . ,

(b) (KT
j , l

T
j ), j = 1, 2, . . . are identically distributed.
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In particular, K̄T
j := (KT

j,lTj
, lTj ), j = 1, 2, . . . are an iid sequence and independent

to K̄T
0 := (KT

0,lT0
, lT0 ). In the following, we assume that KT is an n-dimensional

regenerative functional and that VarT [K̄T
j ] exists and is of rank n′ + 1 for j ≥ 1.

Without loss of generality, assume

(3.2) K̄T
j = (GT

j ,N
T
j , l

T
j ), j ≥ 1,

where GT
j is n′-dimensional and the variance matrix of (GT

j , l
T
j ) is of full rank. Put

mT
L = P

T
0 [lT1 ], mT

G = P
T
0 [GT

1 ], mT
N = P

T
0 [NT

1 ],

µT = (µT
k ) = (mT

G,m
T
N)/mT

L ,
(3.3)

and

(3.4) KT
j = (GT

j , l
T
j ), GT

j = GT
j − lTj mT

G/m
T
L .

Due to the definition, it is not difficult to see a law of large numbers holds:

(3.5) KT
t /t → µT

in probability as t → ∞. Further, a central limit theorem

(3.6)
√

t(KT
t /t − µT )⇒ N(0,VT )

also holds, where VT is the asymptotic variance matrix. Our aim in this section
is to give a refinement of this central limit theorem. More precisely, for a given
function AT : Rn → Rd, we present a valid approximation of the distribution of

(3.7)
√

T (AT (KT
T /T ) − AT (µT ))

up to O(T−1) as T → ∞. As far as considering this form, we can assume without
loss of generality that PT

0 [|NT
j |] = 0 for all j ≥ 1 in (3.2). Further, for notational

simplicity, we concentrate on the case d = 1. Put

(3.8) (µT
k,l) = Var[GT

1 ]/mT
L , ρ

T = (ρT
k ) = Cov[GT

1 , l
T
1 ]

and

(3.9) µT
k,l,m = (κT

k,l,m − ρT
k µ

T
l,m − ρT

l µ
T
m,k − ρT

mµ
T
k,l)/m

T
L ,

where (κT
k,l,m) is the third moments of GT

1 .

Condition 3.1. Put N = (n′ + 2) ∨ 4. Then

(3.10) lim sup
T→∞

PT
0 [|K̄T

0 |2] + PT
0 [|KT

1 |N] + PT
0

∫ τT
2

τT
1

|KT
t |2dt


 < ∞.

Condition 3.2. Let ΨT be the characteristic function of KT
1 :

(3.11) ΨT (u) = PT
0 [exp{iu · KT

1 }].
Then

(3.12) lim sup
T→∞

sup
|u|≥b
|ΨT (u)| < 1
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for all b > 0 and there exists p ≥ 1 such that

(3.13) lim sup
T→∞

∫
Rn′+1
|ΨT (u)|pdu < ∞.

Note that under Conditions 3.1 and 3.2, it holds

(3.14) 0 < lim inf
T→∞

inf
|a|=1
PT

0 [|a · KT
1 |2] ≤ lim sup

T→∞
sup
|a|=1
PT

0 [|a · KT
1 |2] < ∞,

that is, the largest and smallest eigenvalues of the variance matrix ofKT
1 is bounded

and bounded away from 0 for sufficiently large T .

Condition 3.3.

(3.15) lim inf
T→∞

mT
L > 0.

Under Conditions 3.1 and 3.3, the quantities µT , (µT
k,l), (µT

k,l,m) are bounded for
sufficiently large T .

Condition 3.4. There exist ζ > 0 and T0 > 0 such that for B(ζ) := {x ∈ Rn; |x| < ζ},
(1) AT : Rn → R is four times continuously differentiable on µT + B(ζ) for

T ≥ T0,
(2) all the derivatives up to fourth order are uniformly bounded for T ≥ T0 on

µT + B(ζ),
(3)

(3.16) 0 < lim inf
T→∞

vT ≤ lim sup
T→∞

vT < ∞,

where

(3.17) vT =

n′∑
k,l=1

µT
k,lh

T
k aT

l , aT
m = ∂mAT (µT ).

Put

(3.18) aT = (aT
k ) ∈ Rn, aT

k,l = ∂k∂lAT (µT ).

Denote by ι the natural inclusion: Rn′ 3 v 7→ (v, 0, . . . , 0) ∈ Rn.

Theorem 3.1. Let SM be the set of Borel functions on R which are uniformly
bounded by M, M > 0. Under Conditions 3.1, 3.2, 3.3 and 3.4, it holds

(3.19) PT
0 [H(

√
T (AT (KT

T /T ) − AT (µT )))] =
∫

H(z)PT (z)dz + O(T−1)

uniformly in H ∈ SM , where PT is defined by

(3.20) PT (z) = φ(z; vT ) + T−1/2

AT
1 p1(z; vT ) +

AT
3

6
p3(z; vT )

 ,
φ(z; vT ) is the normal density with mean 0 and variance vT ,

(3.21) p1(z; vT ) = −∂φ(z; vT ), p3(z; vT ) = −∂3φ(z; vT ),
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and

AT
1 =

1
2

n′∑
k,l=1

aT
k,lµ

T
k,l + aT ·

PT
0 [KT

τT
1
] +

1
mT

L

PT
0

∫ τT
2

τT
1

KT
t dt

 − ι(ρT )
mT

L

 ,
AT

3 =

n′∑
k,l,m=1

aT
k aT

l aT
mµ

T
k,l,m + 3

n′∑
j,k,l,m=1

aT
j aT

k aT
l,mµ

T
j,lµ

T
k,m.

(3.22)

3.2. Proof of Theorem 3.1. The proof is essentially the same as that of Theorem 1
of [12]. As in [12], we assume without loss of generality that µT = 0 and AT (0) = 0.
We start with a general lemma.

Lemma 3.2. Let Xn
j be a triangular array of k-dimensional independent random

variables having a mean 0, k ∈ N. Assume that Xn
j ∼ Xn

1 for all j and that

(3.23) lim sup
n→∞

E[|Xn
1 |s] < ∞

for an integer s ≥ 4,

(3.24) lim sup
n→∞

sup
|u|≥b
|Ψn(u)| < 1, lim sup

n→∞

∫
Rk
|Ψn(u)|pdu < ∞,

for all b > 0 and for some p ≥ 1 respectively, where

(3.25) Ψn(u) = E[exp{iu · Xn
1}].

Then, S n
m = m−1/2 ∑m

j=1 Xn
j has a bounded density pn

m for sufficiently large m and
n. Further, it holds

sup
x∈Rk

(1 + |x|s)
∣∣∣∣∣pn

m(x) − φ(x; 0, vn)

+
1

6
√

m

k∑
a,b,c=1

κn
abc∂a∂b∂cφ(x; 0, vn)

∣∣∣∣∣ = O(m−1)
(3.26)

uniformly in n ≥ n0, for a sufficiently large n0, where vn is the variance matrix of
Xn

1 , κn
abc are the third moments of Xn

1 .

Proof This lemma is a variant of Theorem 19.2 of [3]. Although the distribution
of Xn

1 depends on n, the assertion is proved in a similar manner with the aid of
Theorem 9.10 of [3], due to our assumptions. For example, we have ( and use )

(3.27) 0 < lim inf
n→∞

inf
|u|=1

E[|u · Xn
1 |2] ≤ lim sup

n→∞
sup
|u|=1

E[|u · Xn
1 |2] < ∞.

////

Step 1 [The regenerative method]: Let π̄ : Rn → Rn′ be the projection onto
the first n′-dimensional subspace. Put α = mT

L ,

(3.28) UT
m =

1
√

m

m∑
j=1

π̄(GT
j ), VT

m =
1
√

m

m∑
j=1

(lTj − α), bT
m =

T − αm
√

m
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for m ≥ 1 and UT
0 = VT

0 = bT
0 = 0. Notice that (UT

m,V
T
m) is a sum of iid vari-

ables and independent to (KT
τT

1
, τT

1 ). Put MT = max{M ≥ 0;
∑M

m=0 lTm ≤ T }. By

Chebyshev’s inequality and (3.14), we have PT
0 [|T − αMT | ≥ δT ] = O(T−1) for all

δ ∈ (0, 1). Let δ ∈ (0, 1/2) be fixed. By decomposing

(3.29) KT
T = KT

τT
1
+
√

mι(UT
m) + RT

m

on the set {MT = m}, we have

PT
0 [H(

√
T AT (KT

T /T ))]

=
∑

m;|T−αm|<δT
PT

0 [ψT
m,1(KT

τT
1
,UT

m,R
T
m)ψT

m,2(τT
1 ,V

T
m , l

T
m+1)] + O(T−1),(3.30)

where

(3.31) RT
m = RT

m(τT
1 ,Vm), RT

m(l, η) = KT
T −KT

Tm(l,η), Tm(l, η) = (l+
√

mη+αm)∧T

for m ≥ 0,

(3.32) ψT
m,1( f , ξ, r) = H(

√
T AT (( f +

√
mι(ξ) + r)/T ))

and ψT
m,2 is the indicator function of the set

(3.33) {(l, η, t) ∈ R3; 0 ≤
√

m(bT
m − η) − l < t}.

Since H is bounded by the assumption, the estimate (3.30) is uniform in H ∈ SM .
Hereafter, we always drop “uniformly in H ∈ SM” for short whenever stating
identity with O(T−1). Besides, we write

∑
m;T to mean

∑
m;|T−αm|<δT . Remind that

α depends on T but is bounded and bounded away from 0 for sufficiently large
T by the assumptions. By Lemma 3.2, there exists a bounded density pT

m(ξ, η) of
(UT

m,V
T
m), so that

PT
0 [ψT

m,1(KT
τT

1
,UT

m,R
T
m)ψT

m,2(τT
1 ,V

T
m , l

T
m+1)] =∫

ψT
m,1( f , ξ, r)ψT

m,2(l, η, t)QT
R(dr, dt; T − Tm(l, η))QT

F(d f , dl)pT
m(ξ, η)dξdη,

(3.34)

where QT
F(·) and QT

R(·; t) is the distribution of K̄T
0 and (KT

1,t, l
T
1 ) respectively. Fur-

ther, applying Lemma 3.2 again with s = N, with the aid of Lemma 3.3 below, we
have

PT
0 [ψ(
√

T AT (KT
T /T ))]

=
∑
m;T

∫
ψT

m,1( f , ξ, r)ψT
m,2(l, η, t)QT

R(dr, dt; T − Tm(l, η))QT
F(d f , dl)

× φT (ξ, η)
{
1 + m−1/2 pT (ξ, η)

}
dξdη + O(T−1),

(3.35)

where φT is a normal density and pT is a polynomial, which are determined by the
variance matrix and the third cumulants of KT

1 .
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Lemma 3.3. It holds

(3.36)
∑
m;T

∫ ψT
m,2(l, η, t)

m(1 + |η|2)
QT

R(dr, dt; T − Tm(l, η))QT
F(d f , dl)dη = O(T−1)

Proof By changing variable: η = (v − αm − l)/
√

m, the summand is equal to

(3.37) m−3/2
∫ 1 +

∣∣∣∣∣∣v − αm − l
√

m

∣∣∣∣∣∣2

−1

1{0≤T−v<t}QT
R(dr, dt; T − v)QT

F(d f , dl)dv.

Observe that ∑
m;T

m−3/2

1 +

∣∣∣∣∣∣v − αm − l
√

m

∣∣∣∣∣∣2

−1

≤ ((1 − δ)T/α)−3/2

2 +
∫ ∞

−∞

1 +

∣∣∣∣∣∣ v − αu − l
√

(1 + δ)T/α

∣∣∣∣∣∣2

−1

du


= ((1 − δ)T/α)−3/2

{
2 + π

√
(1 + δ)T/α3

}
= O(T−1).

(3.38)

////

Step 2 [Calculation of the sum over m] : Here we deal with the sum over m
by changing variable and using Taylor’s expansion. Put

(3.39) ψT (u; f , r) = H
(√

T AT
(
ι(u)
√

T
+

f + r
T

))
for f , r ∈ Rn, and

(3.40) φT,m = φT
{
1 + m−1/2 pT

}
, φT,m

ξ = (∂ jφ
T,m)n′

j=1, φ
T,m
η = ∂n′+1φ

T,m.

Changing variables: ξ = u
√

T/m, η = (v − αm − l)/
√

m and using Taylor’s expan-
sion, the summand of (3.35) turns to

1
√

m

(T
m

)n′/2 ∫
ψT (u; f , r)1{0≤T−v<t}

×
{
φT,m(

√
αu, bT

m) + φT,m
ξ (
√
αu, bT

m) · θm
ξ + φ

T,m
η (
√
αu, bT

m)θm
η + Am

}
× QT

R(dr, dt; T − v)QT
F(d f , dl)dudv,

(3.41)

where

(3.42) θm
ξ = (

√
T/m −

√
α)u, θm

η = (v − l − T )/
√

m

and Am is a negligible reminder term as we see in the following lemma.

Lemma 3.4. It holds∑
m;T

1
√

m

(T
m

)n′/2 ∫
|Am|1{0≤T−v<t}

QT
R(dr, dt; T − v)QT

F(d f , dl)dudv = O(T−1).

(3.43)



16 MASAAKI FUKASAWA

Proof We can put Am = Am
2,0 + Am

1,1 + Am
0,2 where

Am
2,0 =

n′∑
i, j=1

∫ 1

0
(1 − s)∂i∂ jφ

T,m(
√
αu + sθm

ξ , b
T
m + sθm

η )ds{θm
ξ }i{θm

ξ } j ,

Am
1,1 =

n′∑
j=1

∫ 1

0
2(1 − s)∂ j∂n′+1φ

T,m(
√
αu + sθm

ξ , b
T
m + sθm

η )ds{θm
ξ } jθm

η ,

Am
0,2 =

∫ 1

0
(1 − s)∂2

n′+1φ
T,m(
√
αu + sθm

ξ , b
T
m + sθm

η )ds{θm
η }2.

(3.44)

We shall show that these Am
i, j’s are negligible up to O(T−1). Notice that

(3.45) 0 ≤
√

m
aT

m

√ T
αm
− 1

 = (α)−1

√ T
αm
+ 1

−1

<
1

α(1 + (1 + δ)−1/2)
,

so that |θm
ξ | ≤ m−1/2C|bT

mu| for m with |T − αm| < δT and some constant C. In the
following, we use ε and C as generic positive constants independent of T and m. It
also holds |

√
αu + sθm

ξ |2 ≥ αu2/(1 + δ) for all s ∈ [0, 1], so that

(3.46)
∫
|Am

2,0|du ≤ C|bT
m|2

m

∫ 1

0
exp(−ε |bT

m + sθm
η |2)ds.

Since ∑
m;T

m−3/2|bT
m|2 exp(−ε |bT

m + sθm
η |2)

≤ CT−3/2
∞∑

m=−∞

|T − αm|2
T

exp
{
−εα(T − αm − s(T − v + l))2

T (1 + δ)

}
≤ CT−3/2

{
1 + |T − v + l|2/

√
T+∫ ∞

−∞

|T − αz − s(T − v + l)|2
T

exp
{
−εα(T − αz − s(T − v + l))2

T (1 + δ)

}
dz

}
≤ CT−1(1 + |T − v + l|2/T )

(3.47)

uniformly in s ∈ [0, 1], we conclude∑
m;T

1
√

m

(T
m

)n′/2 ∫
|Am

2,0|du1{0≤T−v<t}

QT
R(dr, dt; T − v)QT

F(d f , dl)dv = O(T−1).

(3.48)

In the same manner, we obtain∑
m;T

1
√

m

(T
m

)n′/2 ∫
|Am

0,2|du1{0≤T−v<t}

≤ CT−1|T − v + l|21{0≤T−v<t}

(3.49)
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and ∑
m;T

1
√

m

(T
m

)n′/2 ∫
|Am

1,1|du1{0≤T−v<t}

≤ CT−1|T − v + l|(1 + |T − v + l|/
√

T )1{0≤T−v<t},

(3.50)

hence A1,1 and A0,2 also are negligible. ////

It suffices then to cope with the expectations of the following terms with respect
to Q(dr, dt, d f , dl, dv) : = 1{0≤T−v<t}QT

R(dr, dt; T − v)QT
F(d f , dl)dv;

T1 =
∑
m;T

1
√

m

(T
m

)n′/2 ∫
ψT (u; f , r)φT,m(

√
αu, bT

m)du,

T2 =
∑
m;T

1
√

m

(T
m

)n′/2 ∫
ψT (u; f , r)φT,m

ξ (
√
αu, bT

m)du · θm
ξ ,

T3 =
∑
m;T

1
√

m

(T
m

)n′/2 ∫
ψT (u; f , r)φT,m

η (
√
αu, bT

m)duθm
η .

(3.51)

In the sequel, we write S 1 ≡ S 2 to mean

(3.52)
∫

(S 1(r, t, f , l, v) − S 2(r, t, f , l, v))Q(dr, dt, d f , dl, dv) = O(T−1).

Following Malinovskii [20] ( see also Section 4.2 of [12]), we obtain

T1 ≡
∫

ψT (u; f , r)
∫ ∞

−∞
αn′/2−1φT (

√
αu, λ){

1 +
√
α

T

(
pT (
√
αu, λ) +

λ(n′ − 1)
2α

)}
dλdu.

(3.53)

In the same manner, we can prove T3 ≡ 0 and

(3.54) T2 ≡
αn′/2−1

2
√

T

" ∞

−∞
ψT (u; f , r)u · ∂ξφT (

√
αu, λ)λdλdu.

Further, integrating in λ, we have
T1 + T2

≡ 1
α

∫
ψT (u; f , r)φµ(u)

{
1 − ρ

T · qµ(u)

α
√

T
+

1

6
√

T

n′∑
i, j,k=1

µT
i, j,k pµi, j,k(u)

}
du,

(3.55)

where φµ is the n′-dimensional normal density with mean 0, covariance matrix
(µT

i, j),

(3.56) qµ(u) = −φµ(u)−1∂uφµ(u), pµi, j,k(u) = −φµ(u)−1∂i∂ j∂kφµ(u).

Step 3 [Transformation by AT and calculation of the coefficients]: This is
the last step of the proof. In order to deal with the transformation by AT , we need
a variant of Lemma 2.1 of Bhattacharya and Ghosh [2]; unfortunately, we cannot
directly apply it because AT depends on T and the additional terms f and r are
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involved, which derive from the first and last blocks in the decomposition of KT .
Put AT,ζ(u) = AT (ι(u) + ζ) − AT (ζ) for u ∈ Rn′ and ζ ∈ Rn. (Recall that we are
assuming µT = 0 and AT (0) = 0.) Let B0 ⊂ Rn′ be a neighborhood of 0 and ζ0 > 0,
T0 > 0 be constants such that

(1) AT,ζ is four times continuously differentiable in u on B0 for every T ≥ T0
and |ζ | ≤ ζ0,

(2) all the derivatives up to fourth order are uniformly bounded on B0, T ≥ T0
and |ζ | ≤ ζ0,

(3) inf |ζ |≤ζ0,T≥T0 vT,ζ > 0, where

(3.57) vT,ζ =

n′∑
k,l=1

µT
k,lh

T,ζ
k aT,ζ

l , aT,ζ
m = ∂mAT,ζ(0).

Put

(3.58) aT,ζ = (aT,ζ
k ) ∈ Rn′ , aT,ζ

k,l = ∂k∂lAT,ζ(0)

and

(3.59) ψT,ζ(u) = H(
√

T AT,ζ(u/
√

T ) +
√

T AT (ζ)).

Note that ψT,ζ(u) = ψT (u; f , r) if ζ = ( f + r)/T . By the argument of Lemma 2.1 of
Bhattacharya and Ghosh [2] ( see also Theorem 2.2 of Hall [14]), we have∫

ψT,ζ(u)φµ(u)

1 − ρ
T · qµ(u)

α
√

T
+

1

6
√

T

n′∑
i, j,k=1

µT
i, j,k pµi, j,k(u)

 du

=

∫
H(z +

√
T AT (ζ))PT,ζ(z)dz + O(T−1)

(3.60)

uniformly in ζ ∈ B̄(ζ0), where PT,ζ is defined by

(3.61) PT,ζ(z) = φ(z; vT,ζ) + T−1/2

AT,ζ
1 p1(z; vT,ζ) +

AT,ζ
3

6
p3(z; vT,ζ)

 ,
φ(z; vT,ζ) is the normal density with mean 0 and variance vT,ζ , and

p1(z; vT,ζ) = −∂φ(z; vT,ζ),

p3(z; vT,ζ) = −∂3φ(z; vT,ζ),

AT,ζ
1 = − 1

α

n′∑
j=1

aT,ζ
j ρT

j +
1
2

n′∑
k,l=1

aT,ζ
k,l µ

T
k,l,

AT,ζ
3 =

n′∑
k,l,m=1

aT,ζ
k aT,ζ

l aT,ζ
m µT

k,l,m + 3
n′∑

j,k,l,m=1

aT,ζ
j aT,ζ

k aT,ζ
l,mµ

T
j,lµ

T
k,m.

(3.62)

Now, since

(3.63)
∫

1{| f+r|>ζ0T }Q(dr, dt, d f , dl, dv) = O(T−1),
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we can take ζ = ( f + r)/T and change variable w = z +
√

T AT (ζ) to have∫
ψT (u; f , r)φµ(u)

1 − ρ
T · qµ(u)

α
√

T
+

1

6
√

T

n′∑
i, j,k=1

µT
i, j,k pµi, j,k(u)

 du

≡
∫

ψ(w)

φ(w; vT ) +
1
√

T

ÂT
1 p1(w; vT ) +

AT
3

6
p3(w; vT )

 dz,

(3.64)

where Â1 = aT · ( f + r − ι(ρT )/α) +
∑

i, j aT
i, jµ

T
i, j/2. Finally, taking the expectation

with respect to Q, we obtain (3.22).

4. Edgeworth formula for ergodic diffusions

4.1. Notation and assumptions. Here we treat a family of Itô-diffusions

(4.1) dXT
t = bT (XT

t )dt + cT (XT
t )dW0T

t

defined on a filtered probability space (ΩT ,F T , {FT
t }, PT ) and regenerative func-

tionals KT
t of the form(∫ t

0
f T (XT

s )ds,
∫ t

0
gT

1 (XT
s )dW1T

s , . . . ,∫ t

0
gT

n2
(XT

s )dWn2T
s , FT (XT

t ) − FT (XT
0 )

)
,

(4.2)

where f T , gT = (gT
1 , . . . , g

T
n2

), FT are n1, n2, n3-dimensional Borel functions
on R respectively, (W0T ,W1T , . . . ,Wn2T ) is an n2 + 1-dimensional standard {FT

t }-
Brownian motion, and bT , cT are one-dimensional Borel functions on R. Our aim
here is to give sufficient conditions for Theorem 3.1 to hold. Let LI and LB be
the sets of the locally integrable functions and the locally bounded Borel functions
respectively. We assume the following condition throughout this section.

Condition 4.1. There exist T0 > 0, b, b ∈ LI , a ∈ LB such that for all T ≥ T0,

(4.3) b ≤ bT/|cT |2 ≤ b, (|FT | ∨ | f T | ∨ |gT |2 ∨ 1)/|cT |2 ≤ a,

and

(4.4)
∫ ∞

0
s†(v)dv =

∫ 0

−∞
s†(v)dv = ∞,

∫
R

a(v)
s†(v)

dv < ∞,

where

(4.5) s†(v) =

exp
{
−2

∫ v
0 b(w)dw

}
v ≥ 0,

exp
{
2
∫ 0

v b(w)dw
}

v < 0.

Define the scale function sT
0 and the speed measure πT

0 corresponding to (4.1) as

(4.6) sT
0 (v) =

∫ v

0
exp

{
−2

∫ u

0

bT (w)
cT (w)2 dw

}
du, πT

0 (dv) =
dv

cT (v)2(sT
0 )′(v)

,
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where (sT
0 )′ is the first derivative of sT

0 . Note that

(4.7) |sT
0 (B)| ≥

∫
B

s†(v)dv, πT
0 (B) ≤

∫
B

a(v)
s†(v)

dv

for every Borel set B ⊂ R, so that

(4.8) sT
0 (R) = R, MT := πT

0 (R) < ∞.
Hence the process XT is ergodic for each T ( see e.g., [26] ) and KT of (4.2) is
actually a regenerative functional with respect to {τT

j } given by

(4.9) τT
j+1 = inf{t > τT

j ; XT
t = x and there exists s ∈ (τT

j , t) such that XT
s = y}

with τT
0 = 0, where x and y are arbitrarily fixed two distinct points. This fact is due

to the strong Markov property of XT . Put

(4.10) sT (v) = MT sT
0 (v), πT (dv) = πT

0 (dv)/MT .

Then, as is well-known, πT is the ergodic distribution of XT , so that

(4.11) KT
t /t → µT =

(
πT [ f T ], 0

)
as t → ∞ for each T ≥ T0. It also holds

(4.12) PT

∫ τT
2

τT
1

ϕ(XT
t )dt

 = PT [τT
2 − τT

1 ]πT [ϕ]

for every positive ϕ ∈ LB. Hereafter, we often omit the upper script T for short;

(4.13) X = XT ,W j = W jT , f = f T , τ j = τ
T
j , c = cT , s = sT , . . .

Note that s(X) is a local martingale by Itô’s formula, so that there exists a standard
Brownian motion B such that X = s−1(B〈s(X)〉) ( see e.g., [17]). In particular, we
have

(4.14)
∫ τ

0
ϕ(Xt)dt =

∫ 〈s(X)〉τ

0

ϕ(s−1(Bt))
c̃(Bt)2 dt

for every stopping time τ and ϕ ∈ LB, where

(4.15) c̃(v) = c̃T (v) = c(s−1(v))s′(s−1(v)).

When considering a hitting time

(4.16) τ(z) = inf{t > 0; Xt = z}
for z ∈ R, we have

(4.17) 〈s(X)〉τ(z) = τ̃(z),

where

(4.18) τ̃(z) = inf{s > 0; Bs = s(z)}.
Hence,

(4.19)
∫ τ(z)

0
ϕ(Xt)dt =

∫ τ̃(z)

0

ϕ(s−1(Bt))
c̃(Bt)2 dt.

This identity plays an essential role in the following argument.
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4.2. Smoothness without independent components. We first consider the case
n2 = 0 in (4.2) to give sufficient conditions for Condition 3.2 to be satisfied. More
precisely, we treat

(4.20) KT
t =

(∫ t

0
f (Xs)ds, F(Xt) − F(X0)

)
,

where

(4.21) f = ( f1, . . . , fn1) F = (F1, · · · , Fn3).

What we want to show is that the conditional distribution of KT
τ1
− µTτ1 given

X0 = x is smooth, so that we can assume π[ f ] = 0 without loss of generality. Here
we take n = n1 + n3 and n′ = n1. The following lemma is a slight generalization of
Borizov’s lemma [4].

Lemma 4.1. Let x < y be fixed and suppose X0 = x. Let ϕ = ϕT ∈ LB and suppose

(4.22) Mϕ := sup
v∈[2x−y,y],T≥T0

|ϕ(v)|
c(v)2s′(v)2 < ∞.

Assume there exists an interval I ⊂ (x, y) such that

(4.23) mϕ := inf
v∈I,T≥T0

|ϕ(v)|
c(v)2s′(v)2 > 0.

Then the distribution of

(4.24)
∫ τ(y)

0
ϕ(Xt)dt

is infinite divisible with Lévy measure Lϕ satisfying

(4.25) −c1 +
c2√

z
≤ Lϕ((z,∞)) ≤ c3 +

c4√
z

for z > 0 or

(4.26) −c1 +
c2√
|z|
≤ Lϕ((−∞, z]) ≤ c3 +

c4√
|z|

for z < 0, where ci, i = 1, 2, 3, 4 are positive constants depending only on

(4.27) Mϕ, mϕ, |s(I)|, |s(y) − s(x)|.
Moreover, denoting byΨ its characteristic function, there exists a constant ε > 0

depending only on ci, i = 1, 2, 3, 4 such that for every u ∈ R with |u| ≥ 1/ε, it holds

(4.28) |Ψ(u)| ≤ e−ε
√
|u|.

Proof Use the same argument as [4], Lemmas 1, 2 and 3 with the aid of (4.19).
////

Condition 4.2. There exists an interval [x0, x1] ⊂ R such that
(1) f = f T converges to f∞ = ( f∞1 , . . . , f∞n1

) uniformly on [x0, x1].
(2) f∞ is continuous on [x0, x1].
(3) 1, f∞1 , . . . , f∞n1

are linearly independent on [x0, x1].
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Under this condition, we take (x, y) = (x0, x1) in (4.9) and consider the decom-
position (3.2) with

(4.29) GT
j =

∫ τ j+1

τ j

f (Xt)dt, NT
j = F(Xτ j+1) − F(Xτ j)

because F(Xτ j) = F(x0) for all j. It suffices therefore to deal with the characteristic
function ΨT of

(4.30) KT =

(∫ τ1

0
f (Xs)dt, τ1

)
with initial condition X0 = x0. Denote by ΨT

0 (u) the characteristic function of

(4.31)
(∫ τ(x1)

0
f (Xt)dt, τ(x1)

)
with initial condition X0 = x0. Since

(4.32) |ΨT (u)| ≤ |ΨT
0 (u)|

by the strong Markov property, it suffices to deal with ΨT
0 instead of ΨT .

Proposition 4.2. Under Conditions 4.1 and 4.2, there exists ε > 0 such that it
holds

(4.33) |ΨT
0 (u)| ≤ e−ε

√
|u|

for T ≥ 1/ε and |u| ≥ 1/ε. In particular, Condition 3.2 hold for (4.20).

Proof Let S n′ be the n′-dimensional unit surface and

(4.34) f̄ T (s, v) =
n′∑
j=1

s j f j(v) + sn′+1,

for s ∈ S n′ . Note that for all s ∈ S n′ , there exist Ts > 0 and an interval Is ⊂ (x0, x1)
such that

(4.35) k(s) := inf
T≥Ts,v∈Is

| f̄ T (s, v)| > 0

by the assumptions. Then, there exists εs > 0 such that for t ≥ 1/εs,

(4.36) |ΨT
0 (ts)| ≤ e−εs

√
t

by Lemma 4.1. Put k(t, s) = infT≥Ts,v∈Is f̄ T (t, v) for t ∈ S n′ . Since the open covering

(4.37)
∪

s∈S n′

{
t ∈ S n′ ; k(t, s) > k(s)/2

}
of the compact set S n′ has a finite subcovering, we can conclude (4.33). To show
the last assertion, use Petrov’s lemma ( see [24], p.10.). ////
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4.3. Smoothness with independent components. This subsection treats the gen-
eral case n2 ≥ 1. The following lemma is a variant of Lemma 4.1;

Lemma 4.3. Let x < y be fixed and suppose X0 = x. Let ϕ1 = ϕ
T
1 , ϕ2 = ϕ

T
2 ∈ LB

and suppose

(4.38) Mϕ := sup
v∈[2x−y,y],T≥T0

|ϕ1(v)| ∨ ϕ2(v)2

c(v)2s′(v)2 < ∞

Assume there exists an interval I ⊂ (x, y) such that

(4.39) mϕ := inf
v∈I,T≥T0

|ϕ1(v)| ∧ ϕ2(v)2

c(v)2s′(v)2 > 0.

Then the distribution of

(4.40) Kϕ(u1, u2) = u1

∫ τ(y)

0
ϕ1(Xt)dt + u2

∫ τ(y)

0
ϕ2(Xt)dW1

t

is infinite divisible with Lévy measure Lϕ satisfying at least one of the following
two conditions.

(1) It holds for z > 0 that

(4.41) −c1 −
c2
√
|u1|√
z
+

c3|u2|
z
≤ Lϕ((z,∞)) ≤ c4 +

c5
√
|u1|√
z
+

c6|u2|
z

and that

(4.42) −c′1 +
c′2
√
|u1|√
z
−

c′3|u2|
z
≤ Lϕ((z,∞)) ≤ c4 +

c5
√
|u1|√
z
+

c6|u2|
z

.

(2) It holds for z < 0 that

(4.43) −c1 −
c2
√
|u1|√
|z|
+

c3|u2|
|z| ≤ Lϕ((−∞, z]) ≤ c4 +

c5
√
|u1|√
|z|
+

c6|u2|
|z|

and that

(4.44) −c′1 +
c′2
√
|u1|√
|z|
−

c′3|u2|
|z| ≤ Lϕ((−∞, z]) ≤ c4 +

c5
√
|u1|√
|z|
+

c6|u2|
|z|

where ci, c′i are positive constants depending only on

(4.45) Mϕ, mϕ, |s(I)|, |s(y) − s(x)|.
Moreover, denoting by Ψ the characteristic function of

(4.46)
(∫ τ(y)

0
ϕ1(Xt)dt,

∫ τ(y)

0
ϕ2(Xt)dW1

t

)
,

there exists a constant ε > 0 depending only on ci, c′i , i = 1, 2, 3, 4 such that for
every u ∈ R2 with |u| ≥ 1/ε, it holds

(4.47) |Ψ(u)| ≤ e−ε
√
|u|.



24 MASAAKI FUKASAWA

Proof We will use (4.19) repeatedly without any notice. Put α = s(y)− s(x). Let
τi/m, i = 1, . . . ,m be the times at which X first attains the levels s−1(s(x) + iα/m).
Let τ̃i/m, i = 1, . . . ,m be the times at which B first attains the levels s(x) + iα/m.
Putting

(4.48) Kmi
ϕ = u1

∫ τi/m

τ(i−1)/m

ϕ1(Xt)dt + u2

∫ τi/m

τ(i−1)/m

ϕ2(Xt)dW1
t ,

we have the expression

(4.49) Kϕ(u1, u2) =
m∑

i=1

Kmi
ϕ

for every m ∈ N. Note that Kmi
ϕ , i = 1, . . . ,m are independent by the strong Markov

property of X. Besides, {Kmi
ϕ } is a null array since

(4.50) sup
1≤i≤m

P[|Kmi
ϕ | > ε] ≤ P[Mϕ|u1|τ̃1/m > ε/2] + P[Mϕτ̃1/mu2

2N2 > ε2/4],

which converges to 0 as m → ∞, where N is a standard normal variable indepen-
dent of B. Here we use the fact that Kmi

ϕ has the same distribution as

(4.51) u1Kmi,1
ϕ +

√
u2

2Kmi,2
ϕ N ,

where

(4.52) Kmi,1
ϕ =

∫ τ̃i/m

τ̃(i−1)/m

ϕ1(s−1(Bt))
c̃(Bt)2 dt, Kmi,2

ϕ =

∫ τ̃i/m

τ̃(i−1)/m

ϕ2(s−1(Bt))2

c̃(Bt)2 dt.

Hence, Kϕ(u1, u2) is infinitely divisible. ( see e.g., [6], XVII.7. ) To obtain the
inequalities for Lϕ, as in [4], we use the following fact; for every continuity point
z > 0 of Lϕ,

(4.53) lim
m→∞

m∑
i=1

P[Kmi
ϕ > z] = Lϕ((z,∞))

and for every continuity point z < 0 of Lϕ,

(4.54) lim
m→∞

m∑
i=1

P[Kmi
ϕ ≤ z] = Lϕ((−∞, z]).

( see e.g., [6], XVII.7. ) Observe that for z > 0

P
[√

u2
2Kmi,2

ϕ N > z
]
≤

∫ ∞

0

∫ ∞

z/
√

u2
2 Mϕt

φ(y; 1)dy
α

m
√

2πt3
exp

{
− α2

2tm2

}
dt

=

∫ ∞

0

∫ ∞

z/
√

u2
2 Mϕ

α

2πmt2 exp
{
−α

2 + m2u2

2tm2

}
dudt

=

∫ ∞

z/
√

u2
2 Mϕ

∫ ∞

0

α

2πm
exp

{
− s

2

{
u2 +

α2

m2

}}
dsdu

≤
α|u2|

√
Mϕ

mπz
,

(4.55)
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as well as for z < 0,

(4.56) P
[√

u2
2Kmi,2

ϕ N ≤ z
]
≤
α|u2|

√
Mϕ

mπ|z| .

On the other hand, by Lemma 4.1, it holds

(4.57) −c1 +
c2
√
|u1|√
z
≤ lim

m→∞

m∑
i=1

P[u1Kmi,1
ϕ > z] ≤ c3 +

c4
√
|u1|√
z

for z > 0 or

(4.58) −c1 +
c2
√
|u1|√
|z|
≤ lim

m→∞

m∑
i=1

P[u1Kmi,1
ϕ ≤ z] ≤ c3 +

c4
√
|u1|√
|z|

for z < 0, where ci, i = 1, 2, 3, 4 are positive constants depending only on

(4.59) Mϕ, mϕ, |s(I)|, |s(y) − s(x)|.
Hence, it is straightforward to obtain the result by using e.g.,

P[Kmi
ϕ > z] ≥ P[u1Kmi,1

ϕ > 2z] − P
[√

u2
2Kmi,2

ϕ N ≤ −z
]
,

P[Kmi
ϕ > z] ≥ P

[√
u2

2Kmi,2
ϕ N > 2z

]
− P[u1Kmi,1

ϕ ≤ −z],

P[Kmi
ϕ > z] ≤ P

[√
u2

2Kmi,2
ϕ N > z/2

]
+ P[u1Kmi,1

ϕ > z/2].

(4.60)

To show the last inequality for Ψ, consider the distribution of Kϕ(u1, u2) for u =
(u1, u2) ∈ S 1. Let us treat the case (4.41) and (4.42) hold for example. Note that
by the Lévy-Khinchin expression, there exists a constant σ2 ≥ 0 such that

(4.61) Re Ψ(tu) = −σ2t2/2 − 2
∫
R

sin2(zt/2)Lϕ(dz)

for t ≥ 0, where u ∈ S 1 is fixed and Lϕ corresponds to Kϕ(u1, u2). Take z0, z1 > 0
such that z0 < z1, z 7→ sin(z) is increasing on [z0/2, z1/2], c3/z0 > c6/z1 and
c′2/
√

z0 > c5/
√

z1. Then we have∫
R

sin2(zt/2)Lϕ(dz)

≥
∫

(z0/|t|,z1/|t|]
sin2(zt/2)Lϕ(dz)

≥ sin2(z0/2)Lϕ((z0/|t|, z1/|t|])

≥
(
c3

z0
− c6

z1

)
|u2||t| −

(
c2√
z0
+

c6√
z1

) √
|u1||t| − c1 − c4,

(4.62)

as well as

≥
(

c′2√
z0
− c5√

z1

) √
|u1||t| −

(
c′3
z0
+

c6

z1

)
|u2||t| − c′1 − c4.(4.63)
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Using (4.62) for the case |u2|
√
|t| ≥ 1 and (4.63) for the case |u2|

√
|t| < 1, we

conclude the last assertion. ////

Let us show that Condition 3.2 is satisfied also in the case that n2 ≥ 1. Here
we consider n = n1 + n2 + n3 and n′ = n1 + n2. We again assume π[ f ] = 0 and
Condition 4.2. Then, take (x, y) = (x0, x1) in (4.9) as before. By the same reason as
in the preceding subsection, it suffices to deal with the characteristic function ΨT

0
of

(4.64)
(∫ τ(x1)

0
f (Xt)dt,

∫ τ(x1)

0
g1(Xt)dW1

t , . . . ,

∫ τ(x1)

0
gn2(Xt)dWn2

t , τ(x1)
)

with initial condition X0 = x0. We will assume the following in addition;

Condition 4.3.
(4.65) cg := inf

v∈[x0,x1],i=1,...,n2,T≥T0
|gi(v)|2 > 0.

Proposition 4.4. Under Conditions 4.1, 4.2 and 4.3, there exists ε > 0 such that it
holds

(4.66) |ΨT
0 (u)| ≤ e−ε

√
|u|

for T ≥ 1/ε and |u| ≥ 1/ε. In particular, the conditions of Condition 3.2 hold for
(4.2).

Proof For u = (u1, u2, u3) ∈ Rn′+1, u1 ∈ Rn1 , u2 ∈ Rn2 , u3 ∈ R, put v1 =

(u1, u3) ∈ Rn1+1, v2 = u2 ∈ Rn2 . It suffices to treat the characteristic function of

(4.67) |v1|
∫ τ(x1)

0
f̄ T (v1/|v1|, Xt)dt + |v2|

∫ τ(x1)

0
g(v2/|v2|, Xt)dW1

t ,

where

(4.68) f̄ T (s, x) =
n′∑
j=1

s j f j(x) + sn1+1,

for s ∈ S n1 and

(4.69) g(s, x) =

√√√ n2∑
j=1

s2
jg j(x)2 ≥ √cg

for s ∈ S n2−1. Note that for all s ∈ S n1 , there exist Ts > 0 and an interval Is ⊂
(x0, x1) such that

(4.70) k(s) := inf
T≥Ts,v∈Is

| f̄ T (s, v)| > 0

by the assumptions. Then, there exists εs > 0 such that for t ≥ 1/εs,

(4.71) |ΨT
0 (ts)| ≤ e−εs

√
t

by Lemma 4.3. Put k(t, s) = infT≥Ts,v∈Is f̄ T (t, v) for t ∈ S n1 . Since the open cover-
ing

(4.72)
∪

s∈S n1

{
t ∈ S n1 ; k(t, s) > k(s)/2

}
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of the compact set S n1 has a finite subcovering, we conclude (4.66). To show the
last assertion, use Petrov’s lemma ( see [24], p.10.). ////

4.4. On the moment conditions. Here we consider Condition 3.1 in the case that
KT has the form

(4.73) KT
t =

(∫ t

0
f (Xs)ds,

∫ t

0
ϕ(Xs)dW0

s ,

∫ t

0
ψ(Xs)dW1

s

)
,

where f T , ϕT , ψT ∈ LB; it will be straightforward to extend the results here to the
cases of higher dimensional regenerative functionals such as (4.2). Put

γ = − lim sup
|x|→∞,T→∞

xb(x)
c(x)2

γ+ = − lim sup
x→∞,T→∞

b(x)
c(x)2 ,

γ− = lim inf
x→−∞,T→∞

b(x)
c(x)2 .

(4.74)

Here we abuse the notation a little with γ, γ±, which have been already used in
Section 3.2. The following lemma is a variant of Theorem 2 of [12].

Lemma 4.5. If there exist p ≥ 0, N ∈ N such that

(4.75) 2γ + 1 > N p, lim sup
|x|→∞,T→∞

1 + | f (x)|
|x|p−2c(x)2 < ∞,

then, for every x0, x1 ∈ R,

(4.76) lim sup
T→∞

PT

∣∣∣∣∣∣
∫ τ(x1)

0
f (Xt)dt

∣∣∣∣∣∣N ∣∣∣∣X0 = x0

 < ∞.
Proof The fact that the process X = XT and f = f T depend on T is beyond

Theorem 2 of [12]. It is however easy to see the same reasoning is valid here under
the condition (4.75). ////

Lemma 4.6. If there exist κ± ≥ 0, N ∈ N such that

(4.77) 2γ± > Nκ±, lim sup
x→±∞,T→∞

1 + | f (x)|
eκ± |x|c(x)2 < ∞,

then, for every x0, x1 ∈ R,

(4.78) lim sup
T→∞

PT

∣∣∣∣∣∣
∫ τ(x1)

0
f (Xt)dt

∣∣∣∣∣∣N ∣∣∣∣X0 = x0

 < ∞.
Proof Define Px[·] = PT [·|X0 = x] and

(4.79) Gk
f (x) = Px

[∫ τ(x1)

0
f T (XT

t )Gk−1
f (Xt)dt

]
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recursively for k ∈ N, where G0
f (x) ≡ 1 and x1 is fixed. As in the proof of Theo-

rem 2 of [12], we use Kac’s moment formula [7]

(4.80) Px

∣∣∣∣∣∣
∫ τ(x1)

0
| f (Xt)|dt

∣∣∣∣∣∣k
 = k!Gk

| f |(x)

and an explicit expression

(4.81) G1
| f |(x) = 2

∫ x1

x
(s(x1) − s(z))| f (z)|π(dz) + 2(s(x1) − s(x))

∫ x

−∞
| f (z)|π(dz)

in case x ≤ x1, and

(4.82) G1
| f |(x) = 2(s(x) − s(x1))

∫ ∞

x
| f (z)|π(dz) + 2

∫ x

x1

(s(z) − s(x1))| f (z)|π(dz)

in case x > x1. Denote by π′ the density of π. Take γ̃± such that γ± > γ̃± > Nκ±/2.
Then there exists A > 0 such that if |w| > A, T > A and (z − w)(w − A) > 0, then

(4.83) s′(w)| f (z)|π′(z) ≤ eκ± |z| exp
{

2
∫ z

w

b(v)
c(v)2 dv

}
≤ eκ± |z|−2γ̃± |z−w|

where ± coincides with the signature of w. This inequality implies that

(4.84) lim sup
x→±∞,T→∞

e−κ± |x|G| f |(x) < ∞

as long as f satisfies (4.77). The result then follows the iterative use of (4.80). ////

Proposition 4.7. Assume that (4.75) or (4.77) holds for f with N = 4 and for
ϕ2 ∨ψ2 with N = 2 instead of f . Then Condition 3.1 holds for KT of (4.73) and τT

j
of (4.9) for every x, y ∈ R.

Proof Use the strong Markov property of X, the preceding two lemmas, the
Cauchy-Schwarz and Burkholder-Davis-Gundy inequalities. ////
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