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REALIZED VOLATILITY WITH STOCHASTIC SAMPLING

MASAAKI FUKASAWA

Abstract. A central limit theorem for the realized volatility based on a gen-
eral stochastic sampling scheme is proved. The asymptotic distribution de-

pends on the sampling scheme, which is written explicitly in terms of the
asymptotic skewness and kurtosis of returns. The conditions for the central
limit theorem to hold are examined for several concrete examples of schemes. A
lower bound for mean-squared error is attained by a specific sampling scheme.

More efficient sampling schemes for the Euler-Maruyama approximation than
the usual equidistant scheme are given as an application.

1. Introduction

The realized volatility, which is defined as the sum of squared log-returns, is a
popular statistic in the context of high-frequency data analysis. As is well-known, if
we assume an asset log-price process is a continuous semimartingale, then the real-
ized volatility is a consistent estimator of the quadratic variation of the semimartin-
gale as the sampling frequency of price data goes to infinity. This consistency holds
in a general nonparametric setting, even if sampling scheme is stochastic. Here, by
a sampling scheme, we mean a sequence of increasing stopping times τ = {τj} with

0 = τ0 < τ1 < · · · < τj < · · · .

We suppose that available price data are given as (τj , Xτj ) for j = 0, 1, . . . NT for
a stopping time T , where X = {Xt} is the log-price process and

NT = max{j ≥ 0; τj ≤ T}

is the number of data which are obtained in the time interval [0, T ]. For tick data,
which was called ultra-high-frequency data by Engle [8], we can consider τj to be
transaction times or quote-revision times. In such a case, as far as considering a
stock with liquidity, the durations τj+1 − τj are very small, so that we can expect
the realized volatility

Rv[τ ]T =
NT −1∑
j=0

(
Xτj+1 − Xτj

)2

is a reliable estimator of the quadratic variation 〈X〉T . The asymptotic theory of
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the realized volatility and related statistics has been well-developed for the equidis-
tant sampling case τj = j/n with n → ∞; Jacod and Protter [19], Barndorff-Nielsen
and Shephard [4], Barndorff-Nielsen et.al [3] among others. Deterministic but non-
equidistant cases were treated in Mykland and Zhang [27], Barndorff-Nielsen and
Shephard [5]. The author studied a specific random sampling scheme in Fuka-
sawa [9, 10]. Very recently, a class of random sampling schemes is studied by
Hayashi, Jacod and Yoshida [12]. Our aim in this article is to treat more general
sampling schemes. We extend a result of the author’s previous Japanese paper [11],
which dealt with only the Black-Scholes model.

The importance to incorporate the information content of the durations into
the estimation of the volatility has been recognized through empirical studies with
GARCH type modeling such as Engle [8]. For example, variances of returns are
found to be negatively influenced by long durations between trades. Nevertheless,
there have been few studies on the asymptotic behavior of the realized volatility
based on stochastic sampling schemes. We will show that the asymptotic distri-
bution is determined by asymptotic skewness and kurtosis of returns; this simple
fact was not recognized until Fukasawa [11]. In particular, we will see that negative
relation between variance and duration reduces mean-squared error of the realized
volatility.

Due to market microstructure noise, we encounter another problem; we have to
design a subsampling scheme that is robust and efficient. Zhang, Mykland and
Aı̈t-Sahalia [32], Zhang [31] proposed two scales and multi-scale realized volatility
in the case that the sampling times are deterministic. Oomen [29], Griffin and
Oomen [14] found that tick time sampling, where prices are sampled with every
price change, is superior to calendar time sampling, that is, the equidistant sampling
scheme, in terms of mean-squared error. Although they exploited a simple pure
jump process model, a similar assertion was validated in the usual semimartingale
setting by Fukasawa [10]. The present article proves a central limit theorem for the
realized volatility with a general stochastic sampling scheme. We do not assume any
parametric form of sampling scheme nor such a measurability condition that was
imposed in Jacod [17], Hayashi, Jacod and Yoshida [12]. Apart from microstructure
noise, the realized volatility is found to be possibly biased if sampling scheme is
path-dependent. We introduce models for tick time sampling, one of which is shown
to be most efficient among all bias-free sampling schemes in terms of mean-squared
error. Note that the scheme enjoys also robustness to market microstructure noise
in a specific microstructure model which incorporates bid-ask bounce and price
discreteness as shown by Fukasawa [10].

In Section 2, we recall stable convergence and describe a more or less known
fundamental results on this topic. Section 3 presents the main result of this ar-
ticle. In Section 4, we consider several concrete examples of sampling schemes
including calendar time sampling, business time sampling and tick time sampling.
Section 5 treats efficiency problem. As an application, we propose alternative sam-
pling schemes for the Euler-Maruyama approximation in Section 6.

2. Stable Convergence

In this section, we recall the definition of stable convergence and describe a well-
known fundamental theorem which plays an essential role in the next section. Let
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E be a complete separable metric space and (Ω,F , P ) be an probability space on
which a sequence of E-valued random variables {Zn} is defined.

Definition 1. For a sub σ-field G ⊂ F , we say {Zn} converges G-stably if for all
G-measurable random variable Y , the joint distribution (Zn, Y ) converges in law.

The following limit theorem is a simplified version of a result of Jacod [17, 18] and
Jacod and Shiryaev [20], Theorem IX.7.3, which extends a result of Rootzén [30].
Let M = {Mt,Ft, 0 ≤ t < ∞} be a continuous local martingale defined on (Ω,F , P )
and M⊥ be the set of bounded {Ft}-martingales orthogonal to M .

Theorem 1. Let {Zn} be a sequence of continuous {Ft}-local martingales. Suppose
that there exist an {Ft}-adapted process V = {Vt} such that for all N ∈ M⊥,
t ∈ [0,∞),

〈Zn, N〉t → 0, 〈Zn,M〉t → 0, 〈Zn〉t → Vt

in probability. Then, the C[0,∞)-valued sequence {Zn} converges F-stably to the
distribution of the time-changed process W ′

V where W ′ is a standard Brownian
motion independent of F .

The above convergence implies that the marginal distribution Zn
T converges F-

stably to a mixed normal distribution;

Zn
T ⇒ N

√
VT

where N ∼ N (0, 1) and is independent of F .
The following lemma is also well-known and repeatedly used in the next section.

Lemma 1. Consider a sequence of filtrations

Hn
j ⊂ Hn

j+1, j, n ∈ Z+ = {0, 1, 2, . . . }

and random variables {Un
j }j∈N with Un

j being Hn
j -measurable. If it holds

∞∑
j=0

P [|Un
j+1|2|Hn

j ] → 0 as n → ∞,

then the following two are equivalent;
(1)

∞∑
j=0

Un
j+1 → U as n → ∞.

(2)
∞∑

j=0

P [Un
j+1|Hn

j ] → U as n → ∞.

Here U is a common random variable and the convergences are in probability.

Proof. The proof is the same as in Genon-Catalot and Jacod [13], Lemma 9. ¤
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3. Main result

Here we present a new central limit theorem for the realized volatility. As before,
let (Ω,F , {Ft}, P ) be a filtered probability space and M be a continuous {Ft}-local
martingale. The filtration is supposed to satisfy the usual conditions. We consider
a continuous semi-martingale X = A+M with A being absolutely continuous with
respect to 〈M〉. The Radon-Nikodym derivative ψ = {ψs}, say, is assumed to be
locally bounded and left continuous. Let τn = {τn

j } be a sampling scheme, that is,
a sequence of {Ft}-stopping times with

0 = τn
0 < τn

1 < · · · < τn
j < τn

j+1 < · · ·

Suppose that the number of data is finite, that is,

Nn
t := max{j ≥ 0; τn

j ≤ t} < ∞

for every t ≥ 0, and assume for each j and n that

(1) P [|〈M〉τn
j+1

− 〈M〉τn
j
|6] < ∞.

Note that τn
j is Fτn

j
-measurable for each j and Nn

t + 1 is a stopping time with
respect to the discrete-time filtration {Fτn

j
}.

Now, put

Gk
j,n := P [(Mτn

j+1
− Mτn

j
)k|Fτn

j
]

and consider the following structure of sampling scheme;

Condition 1. For all t ∈ [0,∞), it holds

Nn
t∑

j=0

G2
j,n = Op(1)

as n → ∞ and there exist a positive sequence {εn} with εn → 0 and {Ft}-adapted
locally bounded left continuous processes {as}, {bs} such that

G3
j,n/G2

j,n = bτn
j
εn + op(εn), G4

j,n/G2
j,n = a2

τn
j
ε2n + op(ε2n),

G6
j,n/G2

j,n = op(ε3n), G8
j,n/G2

j,n = op(ε4n), G12
j,n/G2

j,n = op(ε6n)

uniformly in j = 0, 1, . . . , Nn
t as n → ∞.

Lemma 2. Assume Condition 1 to be satisfied. Then, for all t ≥ 0,

(2) sup
j≥0

|〈M〉τn
j+1∧t − 〈M〉τn

j ∧t| = op(εn), sup
j≥0

|Mτn
j+1∧t − Mτn

j ∧t|2 = op(εn)
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as well as

(3) sup
0≤j≤Nn

t

|〈M〉τn
j+1

− 〈M〉τn
j
| = op(εn), sup

0≤j≤Nn
t

|Mτn
j+1

− Mτn
j
|2 = op(εn).

Proof. By the assumptions, it follows

Nn
t∑

j=0

P [(Mτn
j+1

− Mτn
j
)6|Fτn

j
] = op(ε3n),

Nn
t∑

j=0

P [(Mτn
j+1

− Mτn
j
)12|Fτn

j
] = op(ε6n),

and with the aid of Lemma 1, we have

Nn
t∑

j=0

(Mτn
j+1

− Mτn
j
)6 = op(ε3n).

On the other hand,

sup
0≤j≤Nn

t

|Mτn
j+1

− Mτn
j
|2 ≤


Nn

t∑
j=0

(Mτn
j+1

− Mτn
j
)6


1/3

,

so that the second of (3) follows. To show the second of (2), use Doob’s maximal
inequality to have

P

[
sup

0≤t<∞
|Mτn

j+1∧t − Mτn
j ∧t|2k|Fτn

j

]
/G2

j,n = op(εk
n)

for k = 3, 6. Using Lemma 1 again, we obtain

Nn
t∑

j=0

sup
0≤s<∞

|Mτn
j+1∧s − Mτn

j ∧s|6 = op(ε3n),

so that the second of (2) follows since

sup
0≤j≤Nn

t

sup
0≤s<∞

|Mτn
j+1∧s − Mτn

j ∧s|2 ≤


Nn

t∑
j=0

sup
0≤s<∞

|Mτn
j+1∧s − Mτn

j ∧s|6


1/3

.

Using the Burkholder-Davis-Gundy inequality and Doob’s maximal inequality, we
have also

Nn
t∑

j=0

P [|〈M〉τn
j+1

−〈M〉τn
j
|3|Fτn

j
] = op(ε3n),

Nn
t∑

j=0

P [|〈M〉τn
j+1

−〈M〉τn
j
|6|Fτn

j
] = op(ε6n),
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which implies the first of (3) in the same manner. It is then clear to see the first of
(2). ¤

Now, put for a given process Y ,

((Y ))p[τn]t :=
∞∑

j=0

(Yτn
j+1∧t − Yτn

j ∧t)p

for p ∈ N, t ≥ 0 and consider a sequence of continuous local martingales {Zn}
defined by

Zn
t := ε−1

n (((M))2[τn]t − 〈M〉t)

By Lemma 2, we have

Rv[τn]t = ((M))2[τn]t + 2
Nn

t∑
j=0

(Aτn
j+1

− Aτn
j
)(Mτn

j+1
− Mτn

j
) + op(εn).

Note that

Zn
t = 2ε−1

n

∞∑
j=0

∫ τn
j+1∧t

τn
j ∧t

(Ms − Mτn
j
)dMs

by Itô’s formula, so that for all N ∈ M⊥, it holds 〈Zn, N〉 = 0.

Proposition 1. Assume Condition 1 to be satisfied. Then for all t ∈ [0,∞),

((M))2[τn]t → 〈M〉t,

ε−1
n ((M))3[τn]t →

∫ t

0

bsd〈M〉s,

ε−2
n ((M))4[τn]t →

∫ t

0

a2
sd〈M〉s,

〈Zn,M〉t →
2
3

∫ t

0

bsd〈M〉s,

〈Zn − 2
3

∞∑
j=0

bτn
j
(Mτn

j+1∧· − Mτn
j ∧·)〉t →

2
3

∫ t

0

c2
sd〈M〉s,

where

c2
s := a2

s −
2
3
b2
s,

and the convergences are in probability.
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Proof. By Lemma 2 and Lebesgue’s convergence theorem, for all locally bounded
left continuous process {gs}, it holds that

Nn
t∑

j=0

gτn
j
|〈M〉τn

j+1
− 〈M〉τn

j
| →

∫ t

0

gsd〈M〉s

in probability. Since

Nn
t∑

j=0

g2
τn

j
G4

j,n = Op(ε2n)

and

P [|〈M〉τn
j+1

− 〈M〉τn
j
|2|Fτn

j
] ≤ CG4

j,n a.s.

for a constant C by the Burkholder-Davis-Gundy inequality and Doob’s inequality,
using Lemma 1, we have

(4)
Nn

t∑
j=0

gτn
j
G2

j,n →
∫ t

0

gsd〈M〉s

in probability. The first three convergences follow from Lemmas 1 and 2 with the
aid of (4). Now, note that Itô’s formula gives

〈Zn,M〉t = 2ε−1
n

Nn
t∑

j=0

∫ τn
j+1

τn
j

(Ms − Mτn
j
)d〈M〉s + op(1) =

Nn
t∑

j=0

Aj + op(1),

where

Aj :=
2
3
ε−1
n (Mτn

j+1
− Mτn

j
)3 − 2ε−1

n

∫ τn
j+1

τn
j

(Ms − Mτn
j
)2dMs.

Since

Mn
t∑

j=0

P [Aj |Fτn
j
] =

2
3

Mn
t∑

j=0

bτn
j
G2

j,n + op(1),
Mn

t∑
j=0

P [|Aj |2|Fτn
j
] = op(εn),

the fourth convergence also follows from Lemma 1 and (4). In order to see the last
one, noting that

〈Zn − 2
3

∞∑
j=0

bτn
j
(Mτn

j+1∧· − Mτn
j ∧·)〉t

= 〈Zn〉t − 2〈Zn,
2
3

∞∑
j=0

bτn
j
(Mτn

j+1∧· − Mτn
j ∧·)〉t +

4
9

∞∑
j=0

b2
τn

j
(〈M〉τn

j+1∧t − 〈M〉τn
j ∧t),
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it suffices to show

〈Zn〉t →
2
3

∫ t

0

a2
sd〈M〉s

〈Zn,
2
3

∞∑
j=0

bτn
j
(Mτn

j+1∧· − Mτn
j ∧·)〉t →

4
9

∫ t

0

b2
sd〈M〉s

in probability. For the first of these two, observe that

〈Zn〉t = 4ε−2
n

Nn
t∑

j=0

∫ τn
j+1

τn
j

(Ms − Mτn
j
)2d〈M〉s + op(1) =

Nn
t∑

j=0

Bj + op(1),

where

Bj :=
2
3
ε−2
n (Mτn

j+1
− Mτn

j
)4 − 8

3
ε−2
n

∫ τn
j+1

τn
j

(Ms − Mτn
j
)3dMs,

and that

Nn
t∑

j=0

P [Bj |Fτn
j
] =

2
3

Nn
t∑

j=0

a2
τn

j
G2

j,n + op(1),

Nn
t∑

j=0

P [|Bj |2|Fτn
j
] = op(1).

For the second, observe that the left hand term can be written as

4
3
ε−1
n

Nn
t∑

j=0

bτn
j

∫ τn
j+1

τn
j

(Ms − Mτn
j
)d〈M〉s + op(1) =

Nn
t∑

j=0

Cj + op(1),

where

Cj :=
4
3
ε−1
n bτn

j

{
1
3
(Mτn

j+1
− Mτn

j
)3 −

∫ τn
j+1

τn
j

(Ms − Mτn
j
)2dMs

}
,

and that

Nn
t∑

j=0

P [Cj |Fτn
j
] =

4
9

Nn
t∑

j=0

b2
τn

j
G2

j,n + op(1),

Nn
t∑

j=0

P [|Cj |2|Fτn
j
] = op(εn).

Here we have repeatedly used Lemma 1. ¤
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Theorem 2. Assume Condition 1 to be satisfied. Then the C[0,∞)-valued sequence
{Zn} converges F-stably to the distribution of

2
3

∫ ·

0

bsdMs +

√
2
3

∫ ·

0

csdX ′
s,

where X ′ = W ′
〈X〉 is a time-changed process of a standard Brownian motion W ′

which is independent of F . Furthermore, the C[0,∞)-valued sequence

ε−1
n (((X))2[τn] − 〈X〉)

converges F-stably to the distribution of

2
3

∫ ·

0

bsdXs +

√
2
3

∫ ·

0

csdX ′
s.

In particular, for every finite stopping time T ,

ε−1
n (Rv[τn]T − 〈X〉T )

converges in law to the mixed normal distribution

MN

(
2
3

∫ T

0

bsdXs,
2
3

∫ T

0

c2
sd〈X〉s

)
.

Proof. By Proposition 1 and Theorem 1, we obtain the F-stable convergence

Zn − 2
3

∞∑
j=0

bτn
j
(Mτn

j+1∧· − Mτn
j ∧·) ⇒

√
2
3

∫ ·

0

csdX ′
s.

It is not difficult to see

∞∑
j=0

bτn
j
(Mτn

j+1∧· − Mτn
j ∧·) →

∫ ·

0

bsdMs

in probability. It remains to prove

ε−1
n

Nn
t∑

j=0

(Aτn
j+1

− Aτn
j
)(Mτn

j+1
− Mτn

j
) → 1

3

∫ t

0

bsdAs.
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Since

(Aτn
j+1

− Aτn
j
)(Mτn

j+1
− Mτn

j
)

=
∫ τn

j+1

τn
j

(Ms − Mτn
j
)dAs +

∫ τn
j+1

τn
j

(As − Aτn
j
)dMs

= ψτn
j

∫ τn
j+1

τn
j

(Ms − Mτn
j
)d〈M〉s +

∫ τn
j+1

τn
j

(Ms − Mτn
j
)(ψs − ψτn

j
)d〈M〉s

+
∫ τn

j+1

τn
j

∫ s

τn
j

ψud〈M〉udMs,

it suffices to see

ε−1
n

Nn
t∑

j=0

ψτn
j

∫ τn
j+1

τn
j

(Ms − Mτn
j
)d〈M〉s → 1

3

∫ t

0

bsψsd〈M〉s,

ε−1
n

Nn
t∑

j=0

∫ τn
j+1

τn
j

(Ms − Mτn
j
)(ψs − ψτn

j
)ds → 0,

ε−1
n

Nn
t∑

j=0

∫ τn
j+1

τn
j

∫ s

τn
j

ψud〈M〉udMs → 0.

By localizing argument, we can assume ψs is uniformly bounded without loss of
generality. Then, the first and third convergences follow from Lemma 1 by noting

P

[
ψτn

j

∫ τn
j+1

τn
j

(Ms − Mτn
j
)d〈M〉s

∣∣∣∣Fτn
j

]
=

1
3
ψτn

j
G3

j,n,

P

∣∣∣∣∣ψτn
j

∫ τn
j+1

τn
j

(Ms − Mτn
j
)d〈M〉s

∣∣∣∣∣
2 ∣∣∣∣Fτn

j

 = op(ε3n)G2
j,n

and

P

[∫ τn
j+1

τn
j

∫ s

τn
j

ψud〈M〉udMs

∣∣∣∣Fτn
j

]
= 0,

P

∣∣∣∣∣
∫ τn

j+1

τn
j

∫ s

τn
j

ψud〈M〉udMs

∣∣∣∣∣
2 ∣∣∣∣Fτn

j

 = op(ε3n)G2
j,n

respectively. The second convergence follows from the Cauchy-Schwarz inequality:



REALIZED VOLATILITY WITH STOCHASTIC SAMPLING 11

ε−1
n

Nn
t∑

j=0

∫ τn
j+1

τn
j

(Ms − Mτn
j
)(ψs − ψτn

j
)ds

≤

√
ε−2
n

∫ τNn
t +1

0

(Ms − Mn
s )2d〈M〉s

√∫ τNn
t +1

0

(ψs − ψn
s )2d〈M〉s

≤
√

〈Zn〉t/4 + op(1)

√∫ τNn
t +1

0

(ψs − ψn
s )2d〈M〉s → 0,

where

Mn
s = Mτn

j
, ψn

s = ψτn
j
, for s ∈ [τn

j , τn
j+1).

Here we used the fact that ψ is left continuous. ¤

The asymptotic distribution is, therefore, determined by b and a, which are
asymptotic skewness and kurtosis of returns in a sense, respectively. The larger
the skewness, the more biased the realized volatility. The larger the kurtosis, the
larger the mean-squared error. Remarkably, the drift term A affects the asymptotic
distribution if b 6≡ 0. Unfortunately, the randomness of the asymptotic mean and
variance hampers practical use of the central limit theorem. Nevertheless, if we
can assume b ≡ 0, the following corollary will be useful in constructing confidence
intervals or testing hypothesis.

Corollary 1. Let T be a finite stopping time. Assume Condition 1 to be satisfied
with bs1s≤T ≡ 0 and as1s≤T 6≡ 0. Then

Rv[τn]T − 〈X〉T√
Rq[τn]T

⇒ N (0, 2/3),

where

Rq[τn]T =
Nn

T −1∑
j=0

(
Xτn

j+1
− Xτn

j

)4

.

This is a natural extension of a known result on studentizing for the equidistant
sampling case. It should be noted that we do not need to specify the structure
of the sampling scheme nor the normalizing sequence εn in constructing the above
studentized statistic. Thus we obtain a statistic with the asymptotic normality in a
nonparametric setting. It remains for further research to deal with the general case
of b 6≡ 0; however, assuming b to be constant, we obtain the following assertion.

Corollary 2. Let T be a finite stopping time. Assume Condition 1 to be satisfied
with bs1s≤T ≡ b̄ for a constant b̄ and as1s≤T 6≡ 0. Then,

Rv[τn]T − 〈X〉T − 2XTRt[τn]T /(3Rv[τn]T )√
Rq[τn]T − 2(Rt[τn]T )2/(3Rv[τn]T )

⇒ N (0, 2/3),

where
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Rt[τn]T =
Nn

T −1∑
j=0

(
Xτn

j+1
− Xτn

j

)3

.

4. Examples

4.1. Conditionally independent sampling scheme. Here we treat a sampling
scheme τn = {τn

j } with such a measurability condition that was imposed in Ja-
cod [17] and Hayashi, Jacod and Yoshida [12]; we assume that the duration τn

j+1−τn
j

is conditionally independent of M·+τn
j
− Mτn

j
given Fτn

j
for each j ≥ 0. For exam-

ple, suppose that

τn
j+1 − τn

j = gτn
j
ε2n + op(ε2n)

with an {Ft}-adapted positive left continuous process g which is locally bounded
and bounded away from 0. Here the op(ε2n) term is supposed to be Fτn

j
-measurable.

In such a case, we obtain in a straightforward manner,

G2k+1
j,n = op(ε2k+1

n ), G2k
j,n =

(2k)!
2kk!

σ2k
τn

j
gk

τn
j
ε2k
n + op(ε2k

n )

provided that there exists an adapted locally bounded process σ such that

(5) Mt =
∫ t

0

σsdWs, sup
0≤j≤Nn

t ,s≥0
P

[
|στn

j+1∧s − στn
j
|2k|Fτn

j

]
→ 0

as n → ∞ for each t ≥ 0, k ≤ 6, where W is a standard Brownian motion. Note
that we can assume σ is bounded without loss of generality by localizing argument.
Then, it is easy to see

Nn
t∑

j=0

G2
j,n = Op(1),

so that we can apply Theorem 2 with

bs ≡ 0, c2
s = a2

s = 3gsσ
2
s .

This asymptotic distribution coincides, of course, with known results for determin-
istic sampling scheme.

Under the same assumption as (5), we can deal with the following Poisson sam-
pling;

τn
j+1 − τn

j ∼ ε2nλn
j e,

conditionally to Fτn
j
, where e ∼ Exp(1) is an independent exponential variable and

λn
j is Fτn

j
-measurable positive random variable. More generally, if τn

j+1 − τn
j is
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conditionally independent of M·+τn
j
− Mτn

j
given Fτn

j
for each j ≥ 0 with

P [|τn
j+1 − τn

j |k|Fτn
j
] = ε2k

n m
(k)
τn

j
+ op(ε2k), k = 1, 2, . . . , 6

for adapted locally bounded left continuous processes m(k), then we have

G2k+1
j,n = op(ε2k+1

n ), G2k
j,n =

(2k)!
2kk!

σ2k
τn

j
m

(k)
τn

j
ε2k
n + op(ε2k

n )

and

bs ≡ 0, c2
s = a2

s = 3σ2
sm(2)

s /m(1)
s .

Here m(1) is assumed to be locally bounded away from 0.

4.2. Calendar time and Business time sampling. The so-called calendar time
sampling is nothing but the equidistant sampling scheme τn

j = jT/n for a fixed
interval [0, T ]. This case has been extensively investigated and the corresponding
asymptotic distribution of the realized volatility is specified as

bs ≡ 0, c2
s = a2

s = 3Tσ2
s

with εn = 1/
√

n in our terminology. The so-called business time sampling is given
as

τn
j = inf{t > 0; 〈X〉t ≥ 〈X〉T j/n},

or equivalently,

〈X〉τn
j+1

− 〈X〉τn
j

= 〈X〉T /n.

The sampling times are latent because they are defined from unobserved volatility
path; however it is naively considered an ideal scheme in terms of estimation of
volatility. See Hansen and Lunde [15] for detail. Since the above definition does
not give a stopping times, let us consider a modified scheme

τn
j = inf{t > 0; 〈X〉t ≥ P [〈X〉T ]j/n},

or equivalently,

〈X〉τn
j+1

− 〈X〉τn
j

= P [〈X〉T ]/n.

Here the integrability of 〈X〉T is assumed. Note that P [Nn
T ] ≤ n since

Nn
T P [〈X〉T ]/n =

Nn
T −1∑
j=0

〈X〉τn
j+1

− 〈X〉τn
j

= 〈X〉τn
Nn

T

≤ 〈X〉T .

If 〈X〉 is strictly increasing, then by the Dambis-Dubins-Schwarz theorem ( see e.g.,
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Karatzas and Shreve [22], 3.4.6, and Kallenberg [21], Proposition 7.9 ), there exists
a standard Brownian motion W = {Wt,Ht, 0 ≤ t < ∞} such that

M = W〈X〉, Fτ = H〈X〉τ

for every stopping time τ . Hence it holds that

(6) Gk
j,n = P

[(
W〈X〉τn

j+1
− W〈X〉τn

j

)k
∣∣∣∣H〈X〉τn

j

]
so that

G2k+1
j,n = 0, G2k

j,n =
(2k)!
2kk!

P [〈X〉T ]k/nk

and putting εn = 1/
√

n, we have

bs ≡ 0, a2
s ≡ 3P [〈X〉T ].

The asymptotic variance of
√

n(Rv[τn]T −〈X〉T ) is therefore 2P [〈X〉T ]2. Note that
if 〈X〉 is absolutely continuous, that is, there exists an adapted process σ such that

〈X〉t =
∫ t

0

σ2
sds,

then, by Jensen’s inequality,

2P [〈X〉T ]2 ≤ 2TP

[∫ T

0

σ4
sds

]
.

Since the right hand side is the asymptotic variance in calendar time sampling,
we can conclude that business time sampling is more efficient than calendar time
sampling as is expected. On the other hand, business time sampling is not optimal,
as seen later.

4.3. Tick time sampling. Here we consider path-dependent sampling schemes
which serve as models for the so-called tick time sampling. By tick time sampling,
we mean a sampling scheme which is based on random times at which price changes.
At first, define τn as

(7) τn
0 = 0, τn

j+1 = inf{t > τn
j ; Xt ∈ ϕ(εnD) \ {Xτn

j
}},

where ϕ : E → R is a C2 homeomorphism and (E, D) = (R+, N) or (R, Z). This
sampling scheme was introduced by Fukasawa [10] as a model for tick time sampling;
if we assume bid price Bt is given as

(8) Bt = δb(1 − β)St/δc
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for latent price St = exp(Xt), tick size δ and discount factor β ∈ [0, 1) which
represents a proportional cost for quote exposure, it holds

τn
j+1 = inf{t > τn

j ; Bt ≥ Bτn
j

+ δ or Bt ≤ Bτn
j
− 2δ}

almost surely, by setting ϕ = log, (E, D) = (R, N) and εn = δ/(1 − β). Hence τn
j

corresponds to j-th continued price change of bid quote.
Now, let us assume X = M for brevity; this restriction can be removed in

the light of the Girsanov-Maruyama transformation. Besides, we assume X is a
martingale without loss of generality by localizing argument. Then, by the optional
sampling theorem,

P [Xτn
j+1

= ϕ(ϕ−1(Xτn
j
) + ε)|Fτj ] =

d−(Xτn
j
)

d+(Xτn
j
) + d−(Xτn

j
)
,

P [Xτn
j+1

= ϕ(ϕ−1(Xτn
j
) − ε)|Fτj ] =

d+(Xτn
j
)

d+(Xτn
j
) + d−(Xτn

j
)
,

where

d+(x) = ϕ(ϕ−1(x) + εn) − x, d−(x) = x − ϕ(ϕ−1(x) − εn), x ∈ R.

It is then straightforward to see

G2
j,n = d+(Xτn

j
)d−(Xτn

j
) = ϕ′(ϕ−1(Xτn

j
))2ε2n + op(ε2n),

G3
j,n/G2

j,n = d+(Xτn
j
) − d−(Xτn

j
) = op(εn),

G4
j,n/G2

j,n = d+(Xτn
j
)2 − d+(Xτn

j
)d−(Xτn

j
) + d−(Xτn

j
)2 = G2

j,n + op(ε2n).

(9)

It is also straightforward to see

ε2nNn
t =

Nn
t −1∑
j=0

(
ϕ−1(Xτn

j+1
) − ϕ−1(Xτn

j
)
)2

→ 〈ϕ−1(X)〉t

in probability, so that

Nn
t∑

j=0

G2
j,n = Op(1).

Consequently, we can apply Theorem 2 with

bs ≡ 0, a2
s = ϕ′(ϕ−1(Xs))2.

Here we have seen that the proof in Fukasawa [10] can be simplified using Theo-
rem 2.

When considering (7) as a model for tick time sampling, we suppose that bid
quotation is so high-frequently updated that (8) is satisfied for almost all t ≥ 0.
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In other words, we are neglecting time-discretization error and consider space-
discretization effect which comes from price discreteness more significant. Now, let
us consider another model which incorporates time-discretization effect. Define a
sampling scheme τn as

(10) τn
j+1 = inf{t > σn

j ; Xt ∈ ϕ(δnD)}, σn
j = inf{t > τn

j ; 〈X〉t ≥ 〈X〉τn
j

+ hn}

with τn
0 = 0, where δn and hn are positive numbers. Let t1, t2, . . . are bid quote-

revision times in tick data and B̂t1 , B̂t2 , . . . are the corresponding bid prices. Let
tm1 be the first time at which the price changes, that is, B̂tm1

6= B̂tm1−1 . Taking
(8) into consideration, we identify τn

1 = tm1

Bτn
1

=

{
B̂tm1

if B̂tm1
> B̂tm1−1 ,

B̂tm1
+ δ if B̂tm1

< B̂tm1−1 ,

where ϕ = log, D = N and δn = δ/(1 − β). Then, we identify σn
1 = tm1+1; we

regard the duration σn
j − τn

j as a refractory period of quotation which represents
time-discretization effect. Here a latent quantity hn controls the length in business
time scale. Let tm2 be the first time after tm1+1 at which price changes and identify
τn
2 = tm2 and σn

2 = tm2+1. Repeat this procedure to obtain a realization (τn
j , Bτn

j
)

as data. Note that Bτn
j

= (1 − β)Sτn
j
, so that

log(Bτn
j+1

) − log(Bτn
j
) = Xτn

j+1
− Xτn

j
,

which means we can construct Rv[τn] from these data.
Apart from this interpretation, the sampling scheme (10) has an interesting

structure from mathematical point of view. By localizing argument, we can assume
that ϕ′ is bounded and bounded away from 0 without loss of generality. Assume
also X = M again and that 〈X〉 is strictly increasing. Then we have (6) by the
Dambis-Dubins-Schwarz time-change method. Note that τ̂n

j = 〈X〉τn
j

satisfies

τ̂n
j+1 = inf{t > τ̂n

j + hn;Wt ∈ ϕ(δnD)},

where W is a standard Brownian motion with X = W〈X〉. Put xn
k = ϕ(δnk) for

k ∈ D. Then, using the strong Markov property of the Brownian motion, we have

Gm
j,n =

∑
k∈D

∫ xn
k+1

xn
k

{
(xn

k+1 − Xτn
j
)m x − xn

k

xn
k+1 − xn

k

+ (xn
k − Xτn

j
)m xn

k+1 − x

xn
k+1 − xn

k

}
φ(x,Xτn

j
, hn)dx

=hm/2
n

∑
k∈D

(φ(ϕn(k + 1)) − φ(ϕn(k)))
ϕn(k)m − ϕn(k + 1)m

ϕn(k + 1) − ϕn(k)

(Φ(ϕn(k + 1)) − Φ(ϕn(k)))
ϕn(k)mϕn(k + 1) − ϕn(k + 1)mϕn(k)

ϕn(k + 1) − ϕn(k)
,

(11)
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where ϕn(k) = h
−1/2
n (ϕ(δnk) − Xτn

j
) and Φ, φ are the distribution function and

the density of the standard normal distribution respectively. If hn, δn → 0 with
δ2
n/hn → 0, then ϕn(k+1)−ϕn(k) → 0 uniformly, so that by Lebesgue’s convergence

theorem,

Gm
j,n/hm/2

n → −m

∫
xm−1φ′(x)dx − (m − 1)

∫
xmφ(x)dx =

∫
xmφ(x)dx.

Therefore Condition 1 holds with εn = h
1/2
n , bs ≡ 0 and as ≡ 3; the asymptotic

distribution of the realized volatility coincides with that in business time sampling.
On the other hand, if hn, δn → 0 with δ2

n/hn → ∞, then ϕn(k) → ∞ for k 6= k0

uniformly, where k0 is defined as Xτn
j

= ϕ(δnk0). It follows then that

Gm
j,n = hm/2

n

{
−φ(0)ϕn(k0 − 1)m−1 + φ(0)ϕn(k0 + 1)m−1 + op

(
(h−1/2

n δn)m−1
)}

,

so that if m is even, we obtain

Gm
j,n = 2ϕ′(ϕ−1(Xτn

j
))m−1h1/2

n δm−1
n + op(h1/2

n δm−1
n )

and if m is odd,

Gm
j,n = op(h1/2

n δm−1
n ).

Consequently, Condition 1 holds with εn = δn, bs ≡ 0 and as = ϕ′(ϕ−1(Xτn
j
))2;

the asymptotic distribution of the realized volatility coincides with that in the
previous scheme (7). This is an example of such a sampling scheme that (15)
below is not satisfied. These two cases, therefore, have totally different asymptotic
behavior. In the former time-discretization effect is dominant and in the latter
space-discretization effect is dominant. The intermediate case δ2

n/hn → α ∈ (0,∞)
bridges the gap between the two.

5. Efficient sampling scheme

We consider efficiency problem in this section. At first, let us deal with mean-
squared error.

Lemma 3. Assume A = 0 and that τn is a sampling scheme with (1). Then,

(12) P
[
|((X))2[τn]T − 〈X〉T |2

]
≥ 2

3
|P [〈X〉T ]|2

1 + P [Nn
T ]

for every finite stopping time T .

Proof. By Itô’s formula, it holds

P

[∣∣∣(Xτn
j+1

− Xτn
j
)2 − (〈X〉τn

j+1
− 〈X〉τn

j
)
∣∣∣2 |Fτn

j

]
=

2
3
P

[
(Xτn

j+1
− Xτn

j
)4|Fτn

j

]
,
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so that

(13) P
[
|((X))2[τn]T − 〈X〉T |2

]
=

2
3
P [((X))4[τn]T ] .

The assertion follows from Jensen’s inequality and the Cauchy-Schwarz inequality;

P

Nn
T∑

j=0

(Xτn
j+1∧T − Xτn

j ∧T )4

 ≥ P

 1
1 + Nn

T


Nn

T∑
j=0

(Xτn
j+1∧T − Xτn

j ∧T )2


2


≥ 1
1 + P [Nn

T ]
P

Nn
T∑

j=0

(Xτn
j+1∧T − Xτn

j ∧T )2

2

.

¤

Proposition 2. Assume A = 0. Then, tick time sampling defined as (7) with
ϕ = id, (E, D) = (R, Z) and ε2n = P [〈X〉T ]/n is asymptotically efficient in the sense
that it asymptotically attains the lower bound (12) among sampling schemes with
(1) and lim supn→∞ P [Nn

T ]/n ≤ 1.

Proof. Since |Xτn
j+1

− Xτn
j
| = εn for each j ≥ 1,

ε2nP [Nn
T ] = P [Rv[τn]T ] + O(ε2n) = P [〈X〉T ] + O(ε2n)

and

(14) P [((X))4[τn]T ] = P [Rq[τn]T ] + O(ε4n) = ε4nP [Nn
T ] + O(ε4n).

In the light of (13), it suffices to observe

P [((X))4[τn]T ] =
ε4nP [Nn

T ]2 + O(ε2n)
1 + P [Nn

T ]
=

P [〈X〉T ]2

1 + P [Nn
T ]

+ O(ε4n).

¤

Next, let us treat the asymptotic conditional variance of the realized volatility.

Proposition 3. In addition to Condition 1, assume the following condition to hold;
there exists an {Ft}-adapted left continuous process ds which is locally bounded and
bounded away from 0 such that

(15) G2
j,n = dτn

j
ε2n + op(ε2n)

uniformly in j = 0, 1, . . . , Nn
t for all t ∈ [0,∞). Then, it holds

(16) ε2nNn
T →

∫ T

0

d−1
s d〈X〉s
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in probability and{∫ T

0

fs〈X〉s

}2

≤
∫ T

0

f2
s a2

sd〈X〉s
∫ T

0

d−1
s d〈X〉s

for every finite stopping time T and locally bounded left continuous adapted process
fs. In particular,

(17)
∫ T

0

a2
sd〈X〉 ≥ 〈X〉2T

{∫ T

0

d−1
s d〈X〉s

}−1

.

Proof. The convergence (16) follows from (15) and (4). By Jensen’s inequality, we
have

∫ T

0

f2
s a2

sd〈X〉s = lim
n→∞

ε−2
n

Nn
T∑

j=0

f2
τn

j
G4

j,n

≥ lim
n→∞

ε−2
n

Nn
T∑

j=0

{fτn
j
G2

j,n}2

≥ lim
n→∞

1
ε2nNn

T


Nn

T∑
j=0

fτn
j
G2

j,n


2

.

The result then follows from (4) and (16).
¤

Note that in tick time sampling (7) with ϕ = id, we have as ≡ 1 and ds ≡ 1,
so that the identity holds in (17). Although ds depends on sampling scheme by
definition, the right hand side of (17) is approximately

ε−2
n 〈X〉2T /Nn

T

so that it can be considered a lower bound for the left hand integral of (17) among
sampling schemes of which number of data are Nn

T conditionally to FT . Conse-
quently, as far as considering the restricted class of the sampling schemes with
bs ≡ 0, the asymptotic conditional variance of the realized volatility is minimized
by tick time sampling (7) with ϕ = id.

6. Application to the Euler-Maruyama approximation

The asymptotic distribution of the realized volatility is closely related to error
distribution of the Euler-Maruyama approximation. In fact, Jacod and Protter [19]
study the asymptotic distribution of the realized volatility with the equidistant
sampling in the context of error calculus of the Euler-Maruyama scheme. Here we
propose alternative sampling schemes for the Euler-Maruyama approximation as
an application of the preceding sections. Let us consider the stochastic differential
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equation

dξt = µ(ηt, ξt)dt + σ(ηt, ξt)dwt,

dηt = β(ηt)dt,

where w is a standard Brownian motion and µ, σ, β are continuously differentiable
functions with linear growth. Note that in the case β = 1,

dξt = µ(t, ξt)dt + σ(t, ξt)dwt.

Since it is rarely possible to generate a path of ξ fast and exactly, ( see Beskos,
Papaspiliopoulos and Roberts [6] for an exact simulation method ), the Euler-
Maruyama scheme is widely used to approximate to ξ in simulation. For a sampling
scheme τn, the Euler-Maruyama approximation ξn of ξ is given as

dξn
t = µ(ηn

ψn(t), ξ
n
ψn(t))dt + σ(ηn

ψn(t), ξ
n
ψn(t))dwt,

dηn
t = β(ηn

ψn(t))dt,

where ψn(t) = τn
j if t ∈ [τn

j , τn
j+1). The convergence rate of the scheme has been

extensively investigated; see e.g., Kloeden and Platen [23] for a well-known strong
approximation theorem and Kohatsu-Higa [24], Bally and Talay [1, 2], Konakov
and Mammen [25] for weak approximation theorems. Newton [28] treated passage
times as sampling scheme. Cambanis and Hu [7] studied efficiency of determinis-
tic nonequidistant sampling schemes. Hofmann, Müller-Gronbach and Ritter [16]
treated a class of adaptive sampling schemes. Here we exploit a result of Kurtz
and Protter [26], Jacod and Protter [19] to deal with the asymptotic distribution
of pathwise error. Our aim here is to propose sampling schemes which are more
efficient than the usual equidistant sampling scheme.

Assume that τn satisfies Condition 1 with X = W . By Theorem 2, there exists
a conditionally Gaussian martingale Z such that

ε−1
n (((W ))2[τn]t − t) ⇒ Zt

stably. Put Un
t = ε−1

n (ξn
t −ξ). Then, applying Kurtz and Protter [26], Un converges

to a process U which satisfies

dUt = ∂1µ(ξt, ηt)Utdt + ∂1σ(ξt, ηt)
[
UtdWt −

1
2
σ(ξt, ηt)dZt

]
,

where ∂1 refers to the differential operator with respect to the first argument.
Solving this stochastic differential equation, we obtain

UT = −1
2
eT

∫ T

0

e−1
t σ(ξt, ηt)∂1σ(ξt, ηt) [dZt − ∂1σ(ξt, ηt)d〈Z,W 〉t]

Therefore, applying Theorem 2, the distribution of UT is mixed normal with con-
ditional mean
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−1
3
eT

∫ T

0

e−1
t σ(ξt, ηt)∂1σ(ξt, ηt)bt [dWt − ∂1σ(ξt, ηt)dt]

and conditional variance

(18)
1
6
e2
T

∫ T

0

e−2
t σ(ξt, ηt)2∂1σ(ξt, ηt)2c2

t dt,

where

et = exp
{∫ t

0

∂1µ(ξs, ηs)ds +
∫ t

0

∂1σ(ξs, ηs)dWs −
1
2

∫ t

0

∂1σ(ξs, ηs)2ds

}
.

Now, let us first see that space-equidistant sampling scheme defined as (7) with
ϕ = id, εn = n−1/2, X = W is three times efficient than the usual (time-)equidistant
sampling scheme τn

j = j/n. As already seen, for a deterministic time T ,

bs ≡ 0, a2
s ≡ c2

s ≡ 1, P [Nn
T ] ≤ nT

in the space-equidistant case, while

bs ≡ 0, a2
s ≡ c2

s ≡ 3, Nn
T = [nT ]

for the time-equidistant case. As mentioned above, Newton [28] studied this space-
equidistant sampling scheme; the superiority of this scheme is more-or-less known.
Nevertheless, the above simple fact of asymptotic conditional variance has not been
recognized so far.

Next, let us consider to minimize (18) among sampling schemes with bs ≡ 0.
Define τn as

(19) τn
0 = 0, τn

j+1 = inf{t > τn
j ; |Wτn

j+1
− Wτn

j
|2 = ε(τn

j )},

where

ε(τn
j ) =

ε2nêτn
j

σ(ξn
τn

j
, ηn

τn
j
)∂1σ(ξn

τn
j
, ηn

τn
j
)

and

log(êτn
j
) =

j−1∑
i=0

{
∂1µ(ξn

τn
i
, ηn

τn
i
)(τn

i+1 − τn
i ) + ∂1σ(ξn

τn
i
, ηn

τn
i
)(Wτn

i+1
− Wτn

i
)

− 1
2
∂1σ(ξn

τn
i
, ηn

τn
i
)2(τn

i+1 − τn
i )

}
.

Here σ and ∂1σ are assumed to be bounded away from 0. This is an adaptive
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sampling scheme and it is easy to see that Condition 1 is satisfied with

bs ≡ 0, a2
s = c2

s =
es

σ(ξs, ηs)∂1σ(ξs, ηs)
.

Since (15) also is satisfied with ds = a2
s, we can apply Proposition 3 to see that this

adaptive scheme attains a lower bound for (18) among sampling schemes with (15).
In this sense, this sampling scheme is optimal. A disadvantage of this scheme is
the difficulty to estimate the expected number of data. In other words, we cannot
answer how to choose εn so that the expected number of data is less than n. In
practice, it will be better to use

τn
0 = 0, τn

j+1 = inf{t > τn
j ; |Wτn

j+1
− Wτn

j
|2 = ε(τn

j ) ∨ ε′n},

for ε′n > 0, or

τn
0 = 0, τn

j+1 = inf{t > τn
j + ε′n; |Wτn

j+1
− Wτn

j
|2 = ε(τn

j )}

in order to assure a simulation is done in a finite time.
We conclude this section by a remark on generating the random variable (τ,Wτ )

satisfying

τ = inf{t > 0; |Wt − W0| = ε}

on a computer for a given ε. There is no difficulty in generating Wτ because

P [Wτ = W0 ± ε] = 1/2

and τ,Wτ are independent. To generate τ , it is sufficient that the distribution
function Fε of τ is available because

τ ∼ F−1
ε (U),

where U is a random variable uniformly distributed on (0, 1). It is known that the
density of τ is given by

2√
2πt3

∞∑
n=−∞

(4n + 1)ε exp
{
− (4n + 1)2ε2

2t

}
See Karatzas and Shreve [22], 2.8.11. Using the fact that∫ t

0

α√
2πt3

e−α2/2tdt = 2
∫ ∞

b/
√

t

φ(x)dx

for α > 0, we obtain Fε(t) = G(ε/
√

t), where

G(x) = 4

{
1 − Φ(x) −

∞∑
n=1

(Φ((4n + 1)x) − Φ((4n − 1)x))

}
.
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Since

∞∑
n=1

(Φ((4n + 1)x) − Φ((4n − 1)x)) ≈
∞∑

n=0

(Φ((4n + 3)x) − Φ((4n + 1)x))

for small x, and

∞∑
n=1

(Φ((n + 1)x) − Φ(nx)) ≈ 1
2
,

so that

G(x) ≈ 4
{

1 − Φ(x) − 1
4

}
for sufficiently small x ≥ 0. On the other hand, if x ≥ δ > 0, say, the speed of
convergence of the infinite series is very fast. We can therefore use

G(x) ≈

{
4

{
1 − Φ(x) −

∑bN/xc
n=1 (Φ((4n + 1)x) − Φ((4n − 1)x))

}
x ≥ δ,

4(1 − Φ(x)) − 1 0 ≤ x < δ

as a valid approximation of G. It is noteworthy that G is independent of ε, so that
once we obtain the inverse function of G numerically, it is very fast to generate τ
repeatedly even if ε changes adaptively as in (19).
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