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REALIZED VOLATILITY BASED ON TICK TIME SAMPLING

MASAAKI FUKASAWA

Abstract. A central limit theorem for the realized volatility estimator of the
integrated volatility based on a specific random sampling scheme is proved.
The estimator is shown to be also robust to market microstructure noise in-

duced by price discreteness and bid-ask spreads.

1. Introduction

The realized volatility (RV) is a popular estimator of the integrated volatility
(IV) in the context of the analysis of high frequency data. Suppose that an asset
log-price process X = {Xt}t≥0 is given as an Itô process, i.e., a weak solution of

(1) dXt = µ(t,X)dt + σ(t,X)dWt,

where µ and σ are progressively measurable functionals and W = {Wt}t≥0 is a
standard Brownian motion. RV and IV are then defined as

RV =
NT∑
j=1

|Xτj+1 − Xτj |2, IV = 〈X〉T =
∫ T

0

σ(t,X)2dt

for a fixed time T > 0, where we suppose X to be sampled at {τj}j=1,2,...,NT +1. As
is well-known, RV is a consistent estimator of IV as the sampling interval ∆: =
supj≥0 |τj+1 ∧ T − τj ∧ T | tends to 0 and τNT

tends to T in probability where
τ0 = 0 (see e.g., Theorem 22 of Protter [12]). Although this consistency result
does not depend on the specific choice of the sampling scheme {τj}, the asymptotic
distribution does; the corresponding central limit theorems (CLT) have been proved
for deterministic sampling schemes (Jacod and Protter [8], Barndorff-Nielsen and
Shephard [1], Mykland and Zhang [11]) and for a specific random sampling scheme
based on space-discretization (Fukasawa [2]). The present article extends the results
of Fukasawa [2] to include RV of the log-price process based on a tick time sampling
(TTS) scheme which is possibly contaminated by the price discreteness and the
presence of bid-ask spreads.

Recently, literature on high frequency data has paid much attention to market
microstructure noise. It is mainly because empirical studies indicate that RV based
on a reasonable deterministic sampling scheme has a significant bias and is inconsis-
tent (see e.g. Hansen and Lunde [6] and references therein), which contradicts the
theoretical results. In order to account for and overcome this phenomenon, several
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studies assumed that the observed values of the latent price process are contami-
nated by iid noise (see e.g, Zhang, Mykland and Aı̈t-Sahalia [13]). Recent researches
including Hansen and Lunde [6] showed, however, that the microstructure noise is
significantly correlated with the latent price. Taking this into consideration, in the
present article, we assume that the observation error is induced only by the price
discreteness and the presence of bid-ask spreads. See Griffin and Oomen [5] for a
justification of this assumption.

We refer to TTS a specific random sampling scheme where prices are sampled
with every ‘continued price changes’ in bid or ask quotation data. In Section 2, we
give a more precise description of the TTS and then, show the robustness of RV
based on the TTS to the presence of bid-ask spreads. Section 3 presents the main
asymptotic results under a more general situation. The results will be useful to
construct confidence regions of the RV estimator.

2. Model and sampling scheme

In order to deal with the price discreteness and the bid-ask spreads, we exploit
the model of Hasbrouck [7]. We assume that the bid price Bt and the ask price At

are given as

(2) Bt/ε = floor((1 − βt)St/ε), At/ε = ceil((1 + αt)St/ε),

where St = exp(Xt) is the latent price, ε > 0 is the tick size, αt and βt are
nonnegative, possibly random variables which represent costs of quote exposure.
Note that ε determines the size of the effect of the price discreteness and that αt

and βt determine the possible size of the bid-ask spreads. Only ε, {Bt} and {At} are
supposed to be observed. In what follows, we assume either αt or βt is independent
of both t and X. Say, let us assume β : = βt to be so.

Before we describe TTS, we make some remarks on properties of the path of
B = {Bt}. To fix idea, let ε = 1 and β = 0. Then, B takes values in N. Since X
satisfying (1) with nondegenerate σ has the property that

(3) inf{t > 0;Xt > X0} = inf{t > 0;Xt < X0} = inf{t > 0;Xt = X0} = 0, a.s.,

B is not right continuous where/when it jumps. More precisely, say, if St ∈ (1, 2)
for t ∈ [0, τ) and S hits 2 at time τ , then Bt = 1 for t ∈ [0, τ) and lim supt↓τ Bt = 2
while lim inft↓τ Bt = 1. By definition (2), Bτ = 2 > 1 = limt↑τ Bt. It is somewhat
confusing that in the case B drops, that is, say, if St ∈ (2, 3) for t ∈ [0, τ) and S hits 2
at τ , then Bt = 2 for t ∈ [0, τ) and lim inft↓τ Bt = 1 while Bτ = 2 = lim supt↓τ Bt =
limt↑τ Bt. Here we have proved that Bτ = lim supt↓τ Bt = ε+lim inft↓τ Bt for both
cases. Another important fact is that Bτ = Sτ . This equality means that there is
no observation error induced by the price discreteness at the hitting time τ , which
is essential to the following argument for the robustness.

Here we specify our TTS: define a strictly increasing sequence of stopping times
{τ ε

j }j=1,2,...,Nε
T

as τ ε
0 = 0,

(4) τ ε
j+1 = inf

{
t > τ ε

j ; sup
t≥τε

j

Bt − inf
t≥τε

j

Bt ≥ 2ε

}
, N ε

T = max{j ≥ 0; τ ε
j ≤ T}.

It should be noted that if we define {τ̃ ε
j } by replacing ‘2ε’ with ‘ε’ in the above

definition, τ̃ ε
j corresponds to the j-th price change of {Bt}. So readers might wonder
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why we use {τ ε
j } instead of {τ̃ ε

j }. It is because the fractal property (3) of the path
of X implies τ̃ ε

j+1 = τ̃ ε
j a.s. for all j ≥ 1. The same property implies also

τ ε
j+1 = inf

{
t > τ ε

j ; St ∈ εβN \ {Sτε
j
}
}

, a.s.

= inf
{

t > τ ε
j ; Xt ∈ log (εβN) \ {Xτε

j
}
}(5)

for all j ≥ 0, where εβ = ε/(1 − β). Now, let us consider the corresponding RV of
the log-price process

RVε
T (X) : =

Nε
T −1∑
j=1

| log(Bτε
j+1

) − log(Bτε
j
)|2.

In the light of (5), it holds Bτε
j

= (1 − β)Sτε
j

for all j ≥ 1. Hence

RVε
T (X) =

Nε
T −1∑
j=1

| log((1 − β)Sτε
j+1

) − log((1 − β)Sτε
j
)|2

=
Nε

T −1∑
j=1

|Xτε
j+1

− Xτε
j
|2.

Notice that the noise induced by the price discreteness and that by the presence of
bid-ask spreads have been canceled at the first and second equalities respectively.
We study the asymptotic property of RVε

T (X) in the next section.
In terms of practice, the fractal behavior of B might not be feasible. One possible

alternative for the model of the bid price is B̃h defined as

B̃h
t =


Bτε

j
t ∈ (τ ε

j , (τ ε
j + h) ∧ τ ε

j+1) and Bτε
j

> limt↑τε
j
Bt for some j ≥ 1

Bτε
j
− ε t ∈ (τ ε

j , (τ ε
j + h) ∧ τ ε

j+1) and Bτε
j

= limt↑τε
j
Bt for some j ≥ 1

Bt otherwise

for a fixed h > 0, which represents the refractory period. Although the sampling
scheme {τ ε

j } was constructed in terms of B by (4), it is still possible to construct
it in terms of B̃h. In fact, notice first that Bτε

j
= B̃h

τε
j

for all j ≥ 1 by definition.
Second, since it holds

τ ε
j+1 = inf{t > τ ε

j ; Bt − Bτε
j
≥ ε} ∧ inf{t > τ ε

j ; Bt − Bτε
j
≤ −2ε} a.s.,

it also holds that

τ ε
j+1 = inf{t > τ ε

j ; B̃h
t − B̃h

τε
j
≥ ε} ∧ inf{t > τ ε

j ; B̃h
t − B̃h

τε
j
≤ −2ε} a.s..

Thus, there is no problem to construct RVε
T (X) also in this alternative. Notice that

B̃h also is not necessarily right continuous. It might help us to remember that it
holds |B̃h

τε
j+1

− B̃h
τε

j
| = ε for all j ≥ 1.

So far we have assumed the bid price process observed continuously. This as-
sumption is not so unrealistic because we are dealing with such a situation that
space-discretization error is much larger than time-discretization error. Suppose
that time-discretized data {Bj/N}, j = 0, 1, . . . , [NT ] are observed, where N is a
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large number. If we let ε > 0 be fixed and N → ∞, we have
[NT ]−1∑

j=0

∣∣log(B(j+1)/N ) − log(Bj/N )
∣∣2 → ∞

because {Bt} is not right continuous and the size of jumps is ε. On the other
hand, Delattre and Jacod [3] treated the case ε = εN and εN

√
N converges. In

this case, they proved the convergence of the RV and the corresponding central
limit theorem. Since empirical studies showed the divergence of the RV, it seems
necessary to treat the case ε > 0 is fixed, i.e., space-discretization error is more
significant than time-discretization error. We conclude this section by noting that

[NT ]−1∑
j=0

∣∣log(B(j+1)/N ) − log(Bj/N )
∣∣2 ID(j) → RVε(X)

as N → ∞ with ε fixed, where ID(j) is the indicator function of the set D =
{ the price change is in the same direction as the last change }. The left hand side
sum can be computed from the time-discretized data.

3. Central limit theorem

3.1. Assumptions and results. In this section, we derive the asymptotic distri-
bution of RV based on TTS under a slightly more general situation. We extend the
definition of {τ ε

j }; define T ε
0 = 0 and

T ε
j+1 = inf{t > T ε

j ; Xt ∈ Gε \ {XT ε
j
}}, Mε

t = max{m ≥ 0;T ε
m ≤ t}

for t, ε > 0, where Gε = ϕ(εD), ϕ : E → R is a C2-homeomorphism and (D, E) =
(N, R+) or (Z, R). The case that E = R+, ϕ = log and ε = εβ corresponds to the
previous situation. Define continuous processes V ε,k(X) = {V ε,k

t (X)} as

V ε,k
t (X) =

∞∑
j=0

|XT ε
j+1∧t − XT ε

j ∧t|k

for k = 2, 4. It is easy to observe

V ε,k
t (X) =

Mε
t −1∑

m=1

|XT ε
m+1

− XT ε
m
|k + O(εk)

uniformly in t ∈ [0, T ] a.s., so that it suffices to treat V ε,2
T in order to study the

asymptotic distribution of RVε
T (X). Denote by FX = {FX

t } the canonical filtration
of X. Let PX be the law of X and BT be the Borel σ-field of C[0, T ].

Theorem 1. Assume that there exists a BT -measurable positive functional eT such
that PX [A] = PY [eT ; A] for all A ∈ BT , where PY is the law of a weak solution Y
of

dYt = σ(t, Y )dWt, Y0 = X0.

Then, it holds
ε−1(V ε,2(X) − 〈X〉) =⇒ W ′

q(·)

as ε → 0, where W ′ = {W ′
t} is a standard Brownian motion which is independent

of FX
T and

q(t) =
2
3

∫ t

0

ϕ′(ϕ−1(Xs))2σ(s, X)2ds, t ∈ [0, T ].
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The convergence is in the sense of FX
T -stable convergence in C[0, T ]. Moreover, it

holds

V ε,2
T (X) − 〈X〉T√

V ε,4
T (X)

=⇒ N (0, 2/3).

3.2. Proof of Theorem 1. Put

Dε
t (X) = ε−1(V ε,2

t (X) − 〈X〉t).

First, we consider the case µ = 0 and σ = 1.

Lemma 1. Let F = {Ft} be a filtration satisfying the usual conditions. Assume
X to be a standard F-Brownian motion. Then, Dε(X) is an FX-martingale and
it holds that for all finite F-stopping time τ ,

(6) 〈Dε(X), X〉τ → 0, 〈Dε(X)〉τ → 2
3

∫ τ

0

ϕ′(ϕ−1(Xs))2ds

and

(7) ε−2V ε,4
τ (X) →

∫ τ

0

ϕ′(ϕ−1(Xs))2ds

in probability as ε → 0.

Proof. See Section 3.3. ¤

Next, we treat a general σ.

Lemma 2. Assume µ = 0. Then, Dε(X) is an FX-local martingale and it holds
that for all t ≥ 0,

〈Dε(X), X〉t → 0, 〈Dε(X)〉t → q(t), ε−2V ε,4
t (X) → 3q(t)/2

in probability as ε → 0.

Proof. By the time-change method for martingales (see e.g. 3.4.6 of Karatzas and
Shreve [10]), there exists a Brownian motion B such that X = B〈X〉. Note that
Dε

t (X) = Dε
〈X〉t

(B). Hence

〈Dε(X), X〉t = 〈Dε(B), B〉〈X〉t
〈Dε(X)〉t = 〈Dε(B)〉〈X〉t

and

ε−2V ε,4
t (X) = ε−2V ε,4

〈X〉t
(B).

Applying Lemma 1 to B, the assertion follows. ¤

By Lemma 2 and a similar argument to IX.7.3 of Jacod and Shiryaev [9], we can
prove Theorem 1 in the case of µ = 0. Since the convergence is FX

T -stable and the
validity of the Girsanov transformation is assumed, the general case results from
the case µ = 0.
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3.3. Proof of Lemma 1. Note that X is a standard Brownian motion in this
subsection. Denote by Px the conditional probability measure or expectation given
X0 = x. Put ξε

j = XT ε
j
, Hε

j = FT ε
j+1

and ∆ε
j = T ε

j+1 − T ε
j for short. Define

dε
+(x) = ϕ(ϕ−1(x) + ε) − x, dε

−(x) = x − ϕ(ϕ−1(x) − ε)

and
gε
1(x) = dε

+(x)dε
−(x),

gε
2(x) = dε

+(x)dε
−(x)(dε

+(x)2 − dε
+(x)dε

−(x) + dε
−(x)2)

for x ∈ Gε. Furthermore, put Lτ = sup0≤u≤τ ϕ′(ϕ−1(Xu))2.

Lemma 3. The following identities hold.
(1) Px[|ξε

1 − ξε
0|2] = Px[∆ε

0] = gε
1(x),

(2) Px[|ξε
1 − ξε

0|4] = gε
2(x),

(3) Px[||ξε
1 − ξε

0|2 − ∆ε
0|2] = 2gε

2(x)/3.
Moreover, for all K > 0,

(8) sup
|x|≤K

Px[∆ε
0|k] = O(ε2k).

Proof. Use an explicit form of the Laplace transformation of ∆ε
0 which is given in

2.8.C of Karatzas and Shreve [10]. ¤
Lemma 4. It holds

(9) sup
j≥0

|T ε
j+1 ∧ τ − T ε

j ∧ τ | → 0 a.s.

and

(10) Mε
τ = Op(ε−2)

as ε → 0.

Proof. Deny (9). Then, with a positive probability, there exists a time interval
where the path Xt is constant, which contradicts the fractal property of the path
of a Brownian motion. Now, (9) and Theorem 22 of Protter [12] imply

ε2Mε
τ =

Mε
τ∑

j=1

|ϕ−1(ξε
j+1) − ϕ−1(ξε

j)|2 → 〈ϕ−1(X)〉τ < ∞.

¤
Lemma 5. It holds

Mτ∑
j=1

gε
1(ξ

ε
j ) → τ,

Mτ∑
j=1

gε
2(ξ

ε
j ) = Op(ε2)

as ε → 0.

Proof. Note that
Mτ∑
j=1

gε
1(ξ

ε
j ) =

Mτ∑
j=1

P
[
|ξε

j+1 − ξε
j |2|Hε

j−1

]
by Lemma 3 and that

Mτ∑
j=1

|ξε
j+1 − ξε

j |2 → τ
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by (9) and Theorem 22 of Protter [12]. In the light of Lemma 9 of Genon-Catalot
and Jacod [4], it suffices to prove

Mτ∑
j=1

gε
2(ξ

ε
j ) =

Mτ∑
j=1

P
[
|ξε

j+1 − ξε
j |4|Hε

j−1

]
= Op(ε2).

Define a stopping time σK for K > 0 as

σK = inf{t > 0;ϕ′(ϕ−1(Xt)) ∨ |ϕ′′(ϕ−1(Xt))| > K}.

Then, we have

(11) gε
1(ξ

ε
j ) = ϕ′(ϕ−1(ξε

j ))
2ε2 + Aε

1,j , gε
2(ξ

ε
j ) = gε

1(ξ
ε
j )ϕ

′(ϕ−1(ξε
j ))

2ε2 + Aε
2,j ,

where Aε
i,j are remainder terms satisfying

sup
1≤j≤Mε

τ

Aε
1,j |{σK>τ} = Op(ε3), sup

1≤j≤Mε
τ

Aε
2,j |{σK>τ} = Op(ε5).

Hence, for all δ > 0,

P

ε−2
Mτ∑
j=1

gε
2(ξ

ε
j ) > δ

 ≤ P [σK ≤ τ ] + P
[
K4ε2Mε

τ + Op(ε) > δ, σK > τ
]
.

Here we have used (10). ¤

We are now ready to prove (7). In the light of Lemma 9 of Genon-Catalot and
Jacod [4], it suffices to prove

ε−2
Mτ∑
j=1

gε
2(ξ

ε
j ) →

∫ τ

0

ϕ′(ϕ−1(Xs))ds.

Because of (11)(10), this is equivalent to
Mτ∑
j=1

ϕ′(ϕ−1(ξε
j ))g

ε
1(ξ

ε
j ) →

∫ τ

0

ϕ′(ϕ−1(Xs))ds.

The left hand sum is equal to
Mτ∑
j=1

P
[
ϕ′(ϕ−1(ξε

j ))∆
ε
j |Hε

j−1

]
,

hence (7) is obtained by observing
Mτ∑
j=1

ϕ′(ϕ−1(ξε
j ))∆

ε
j →

∫ τ

0

ϕ′(ϕ−1(Xs))ds

and using again the argument of Lemma 9 of Genon-Catalot and Jacod [4].

Lemma 6. It holds
Mε

τ∑
j=1

|∆ε
j |k = Op(ε2(k−1)), sup

0≤j≤Mε
τ

|∆ε
j | = Op(ε2−δ)

for any k ∈ N, δ > 0.
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Proof. Using (8), we have
Mε

τ∑
j=1

P
[
|∆ε

j |k|Hε
j−1

]
= Op(ε2(k−1)).

It suffices then for the first part to see

ε−2(k−1)

Mε
τ∑

j=1

|∆ε
j |k − P

[
|∆ε

j |k|Hε
j−1

]
→ 0

in probability. By the Lenglart inequality, the convergence follows from

ε−4(k−1)

Mε
τ∑

j=1

P
[
|∆ε

j |2k|Hε
j−1

]
= Op(ε2) → 0.

We use the first part to prove the second. For given δ > 0, let k = 2/δ. For all
a > 0,

P

[
ε−(2−δ) sup

1≤j≤Mε
τ

∆ε
j > a

]
≤ P

ε−k(2−δ)

Mε
τ∑

j=1

|∆ε
j |k > ak

 ,

which tends to 0 uniformly in ε > 0 as a → ∞. ¤

Define V (Dε) = {Vt(Dε)} as

Vt(Dε) =
∞∑

j=0

|Dε
T ε

j+1∧t − Dε
T ε

j ∧t|2.

Lemma 7. It holds
sup

0≤t≤τ
|Vt(Dε) − 〈Dε〉t| → 0

in probability.

Proof. Using Itô’s formula,

Dε
t = 2ε−1

∫ t

0

(Xs − Xε
s )dXs,

where

Xε
s =

∞∑
j=0

XT ε
j
|{T ε

j ≤t<T ε
j+1}.

In particular, Dε is an FX -martingale and

〈Dε〉t − 〈Dε〉s = 4ε−2

∫ t

s

|Xu − Xε
u|2du ≤ Lτ |t − s|

for t, s ∈ [0, τ ]. Hence {〈Dε〉τ}ε>0 is tight. In order to prove the lemma by making
a similar argument to 1.5.8 of Karatzas and Shreve [10], it suffices to observe, in
addition,

sup
j≥0

∣∣∣〈Dε〉T ε
j+1∧τ − 〈Dε〉T ε

j ∧τ

∣∣∣ ≤ Lτ sup
j≥0

|T ε
j+1 ∧ τ − T ε

j ∧ τ | → 0

and

sup
j≥0

|Dε
T ε

j+1∧τ − Dε
T ε

j ∧τ | = sup
j≥0

ε−1||XT ε
j+1∧τ − XT ε

j ∧τ |2 − |T ε
j+1 ∧ τ − T ε

j ∧ τ ||,
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which also tends to 0 in probability since

sup
j≥0

|XT ε
j+1∧τ − XT ε

j ∧τ |2 = Op(ε2), sup
j≥0

|T ε
j+1 ∧ τ − T ε

j ∧ τ | = op(ε).

Here we have used the second part of the previous lemma. ¤

Now, it is not difficult to observe that

V ε,2
τ (Dε) =

Mε
τ∑

j=1

{ζε
j}2 + op(1)

as ε → 0, where ζε
j = ε−1(|XT ε

j+1
− XT ε

j
|2 − (T ε

j+1 − T ε
j )). Since

Mε
τ∑

j=1

P
[
{ζε

j}2|Hε
j−1

]
=

2
3
ε−2

Mε
τ∑

j=1

gε
2(ξ

ε
j ) →

2
3

∫ τ

0

ϕ′(ϕ−1(Xs))ds

by Lemma 3 and
Mε

τ∑
j=1

P
[
{ζε

j}4|Hε
j−1

]
→ 0,

we obtain the second part of (6) by using again Lemma 9 of Genon-Catalot and
Jacod [4]. In order to prove the first part, observe that

〈Dε(X), X〉τ = 2ε−1

∫ τ

0

(Xs − Xε
s )ds = 2ε−1

Mε
τ∑

j=1

∫ T ε
j+1

T ε
j

Xsds − XT ε
j
(T ε

j+1 − T ε
j ).

Since

P

[∫ T ε
j+1

T ε
j

Xsds − XT ε
j
(T ε

j+1 − T ε
j )

∣∣∣∣∣Hε
j−1

]

= Pξε
j

[∫ T ε
1

0

Xsds − X0T
ε
1

]
= Pξε

j

[
(X3

T ε
1
− X3

0 )/3 − X0T
ε
1

]
=

1
3
dε
+(ξε

j )d
ε
−(ξε

j )(d
ε
+(ξε

j ) − dε
−(ξε

j )),

and for all K > 0,

sup
|x|≤K

|dε
+(x)dε

−(x)(dε
+(x) − dε

−(x))| = O(ε4),

we have

2ε−1

Mε
τ∑

j=1

P

[∫ T ε
j+1

T ε
j

Xsds − XT ε
j
(T ε

j+1 − T ε
j )

∣∣∣∣∣Hε
j−1

]
= Op(ε) → 0.

Finally, observe that

ε−2

Mε
τ∑

j=1

P

∣∣∣∣∣
∫ T ε

j+1

T ε
j

Xsds − XT ε
j
(T ε

j+1 − T ε
j )

∣∣∣∣∣
2∣∣∣∣∣Hε

j−1

 → 0

by using e.g., Kac’s moment formula and then, apply again Lemma 9 of Genon-
Catalot and Jacod [4].
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