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ABSTRACT. This paper studies the Lévy model of the optimal multiple-stopping problem arising in the
context of the timing option to withdraw from a project in stages. The profits are driven by a general
exponential spectrally negative Lévy process. This allows the model to incorporate sudden declines of the
project values, generalizing greatly the classical geometric Brownian motion model. We solve the one-
stage case as well as the extension to the multiple-stage case. The optimal stopping times are of threshold-
type and the value function admits an expression in terms of the scale function. A series of numerical
experiments are conducted to verify the optimality and to evaluate the efficiency of the algorithm.
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1. INTRODUCTION

Consider a firm facing a decision of when to abandon or contract a project so as to maximize the total expected
future cash flows. This problem is often referred to as the abandonment option or the contraction option. A typical
formulation reduces to a standard optimal stopping problem, where the uncertainty of the future cash flow is driven
by a stochastic process and the objective is to find a stopping time that maximizes the total expected cash flows
realized until then. A more realistic extension is its multiple-stage version where the firm can withdraw from a
project in stages.

In a standard formulation, given a discount rate r > 0 and Xt = x+(µ− 1
2σ

2)t+σWt for a standard Brownian
motion W , µ ∈ R and σ > 0 , one wants to obtain a stopping time τ of X that maximizes the expectation

E
[∫ τ

0
e−rt(eXt − δ)dt+ e−rτK1{τ<∞}

]
.(1.1)

The profit collected continuously is modeled as the geometric Brownian motion eXt less the constant operating
expense δ ≥ 0. The value K ∈ R corresponds to the lump-sum benefits attained (or the costs incurred) at the time
of abandonment. Here a technical assumption r > µ is commonly imposed so that the expectation is finite and
the problem is non-trivial. The problem is rather simple mathematically; it reduces to the well-known perpetual
American option (or the McKean optimal stopping problem). An explicit solution can be attained even when X is
generalized to a Lévy process (see, e.g., Mordecki [26]).

This version: September 9, 2012.
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In this paper, we generalize the classical model by extending from Brownian motion to a general Lévy process
with negative jumps (spectrally negative Lévy process), and consider the optimal stopping problem of the form:

sup
τ

E
[∫ τ

0
e−rtf(Xt)dt+ e−rτg(Xτ )1{τ<∞}

]
.(1.2)

We obtain the optimal stopping time as well as the value function for the case f is increasing and g admits the
form g(x) = K −

∑N
i=1 cie

aix for some strictly positive constants c and a. We also show the optimality among
all stopping times of threshold type (see (2.4) below) when g is relaxed to be a general decreasing and concave
function.

We further extend to the multiple-stage case where one wants to obtain a set of stopping times {τ (m); 1 ≤ m ≤
M} such that 0 = τ (0) ≤ τ (1) ≤ · · · ≤ τ (M) a.s. and achieve

sup
τ (1)≤···≤τ (M)

M∑
m=1

E

[∫ τ (m)

τ (m−1)

e−rtFm(Xt)dt+ e−rτ
(m)
gm(Xτ (m))1{τ (m)<∞}

]
(1.3)

when gm and fm := Fm − Fm+1 (with FM+1 = 0), for each 1 ≤ m ≤M , satisfy the same assumptions as in the
one-stage case. The multiple-stopping problem arises frequently in real options (see e.g. [14]) and is well-studied
particularly for the case X is driven by Brownian motion. In mathematical finance, similar problems are dealt in
the valuation of swing options [10, 11].

Although the use of the geometric Brownian motion is fairly common in real options, empirical evidence sug-
gests that the real world is not Gaussian, but with significant skewness and kurtosis (see, e.g., [8, 13, 30]). Dixit
and Pindyck [14] considered the case with jumps of a fixed size with Poisson arrivals. Boyarchenko and Leven-
dorskiı̆ [9] considered the EPV approach for a general Lévy process satisfying the (ACP)-condition (with a focus
on exponential-type jumps for illustration); they solved a related multiple-stage problem with g being constant. The
Lévy model is in general less intractable than the continuous diffusion counterpart, especially when the lump-sum
reward function g is not a constant. When jumps are involved, the process can potentially jump over a threshold
level, requiring one to compute the overshoot/undershoot distributions that depend significantly on the form of the
Lévy measure. Technical details are further required when it has jumps of infinite activity or infinite variation.

In this paper, we take advantage of the recent advances in the theory of the spectrally negative Lévy process
(see, e.g., [7, 21]). In particular, we use the results by Egami and Yamazaki [17], where we obtained and showed
the equivalence of the continuous/smooth fit condition and the first-order condition in a general optimal stopping
problem. Unlike the two-sided jump case, the identification of the candidate optimal stopping time can be con-
ducted efficiently without intricate computation. The resulting value function can be written in terms of the scale
function, which also can be computed efficiently by using, e.g., [18, 29]. The extension to the multiple-stage can
be carried out without losing generality. The resulting optimal stopping times are of threshold type with possibly
simultaneous jumps, and the value function again admits the form in terms of the scale function. We also conduct
a series of numerical experiments using the spectrally negative Lévy process with hyperexponential jumps so as
to verify the optimality of the proposed strategies and also the efficiency of the proposed algorithm. We refer the
reader to, among others, [1, 4, 5, 6, 15, 16, 22, 25] for optimal stopping problems of spectrally negative Lévy
processes.

The rest of the paper is organized as follows. In Section 2, we review the spectrally negative Lévy process and
the scale function and then solve the one-stage problem. In Section 3, we extend it to the multiple-stage problem.
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In Section 4, we verify the optimality and efficiency of the algorithm through a series of numerical experiments.
Section 5 concludes the paper.

2. ONE-STAGE PROBLEM

Let (Ω,F ,P) be a probability space hosting a spectrally negative Lévy process X = {Xt : t ≥ 0} characterized
uniquely by the Laplace exponent

ψ(β) := E0
[
eβX1

]
= cβ +

1

2
σ2β2 +

∫
(0,∞)

(e−βz − 1 + βz1{0<z<1}) Π(dz), β ∈ R,(2.1)

where c ∈ R, σ ≥ 0 and Π is a Lévy measure concentrated on (0,∞) such that∫
(0,∞)

(1 ∧ z2)Π(dz) <∞.(2.2)

Here and throughout the paper Px is the conditional probability where X0 = x ∈ R and Ex is its expectation. We
exclude the case X is a negative subordinator (decreasing a.s.) and we shall further assume that the Lévy measure
is atomless:

Assumption 2.1. We assume that Π does not have atoms.

This section considers the one-stage optimal stopping problem of the form (1.2) where the supremum is taken
over the set (or a subset) of stopping times with respect to the natural filtration F = (Ft)t≥0 generated by X . We
assume the running payoff function f to be locally bounded and increasing. The stochastic process X models the
state of the project and the monotonicity of f means that it yields higher benefits when X is high. Typically one
assumes f(x) = ex − δ as in (1.1) and this is clearly a special case of this model. Regarding the terminal reward
function g, we consider two cases: (i) when g is a sum of exponential functions (Assumption 2.2 below) and (ii)
when g is a general decreasing and concave function (Assumption 2.3 below).

The results discussed in this section are applications of Egami and Yamazaki [17] and will be extended to the
multiple-stage problem in the next section. Let S be the set of all [0,∞]-valued F-stopping times and define for
any τ ∈ S,

u(x, τ) ≡ u(x, τ ; f, g) := Ex
[∫ τ

0
e−rtf(Xt)dt+ e−rτg(Xτ )1{τ<∞}

]
, x ∈ R.(2.3)

After a brief review on the scale function and the results of [17], we shall solve under Assumption 2.2 below that

u(x) := sup
τ∈S

u(x, τ).

We then obtain under Assumption 2.3 below a weaker version of optimality

ũ(x) := sup
τ∈S̃

u(x, τ),

over the set of all first down-crossing times,

S̃ := {τA : A ∈ R},

where

τA := inf {t > 0 : Xt ≤ A} , A ∈ R,(2.4)
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with inf ∅ = ∞ by convention. This form of optimality is often used in real options and also in the field of
corporate finance and credit risk as exemplified by Leland’s endogenous default model [23, 24]. In practice, a
strategy must be simple enough to implement and it is in many cases a reasonable assumption to focus on the set
of stopping times of threshold type as in (2.4). Because S̃ ⊂ S, it is clear that u ≥ ũ. For the rest of the paper, let
h±(x) := ±h(x) ∨ 0, x ∈ R, for any measurable function h : R 7→ R.

2.1. Review of scale functions and Egami and Yamazaki [17]. For any spectrally negative Lévy process, there
exists a function called the (r-)scale function

W (r) : R 7→ R, r ≥ 0,

which is zero on (−∞, 0), continuous and strictly increasing on [0,∞), and is characterized by the Laplace trans-
form: ∫ ∞

0
e−sxW (r)(x)dx =

1

ψ(s)− r
, s > Φr,

where

Φr := sup{λ ≥ 0 : ψ(λ) = r}, r ≥ 0.

Here, the Laplace exponent ψ in (2.1) is known to be zero at the origin, convex on R+; Φr is well-defined and is
strictly positive whenever r > 0. We also define

Z(r)(x) := 1 + r

∫ x

0
W (r)(y)dy, x ∈ R,

which is also called the scale function. As we shall see below, the pair of scale functions W (r) and Z(r) play
significant roles in our problems.

As in Lemmas 8.3 and 8.5 of Kyprianou [21], for each x > 0, the functions r 7→W (r)(x) and r 7→ Z(r)(x) can
be analytically extended to r ∈ C. Fix a ≥ 0 and define ψa(·), as the Laplace exponent of X under Pa with the
change of measure dPa

dP
∣∣
Ft

= exp(aXt − ψ(a)t), t ≥ 0; as in page 213 of [21], for all β > −a,

ψa(β) :=
(
aσ2 + c−

∫ 1

0
u(e−au − 1)Π(du)

)
β +

1

2
σ2β2 +

∫ ∞
0

(e−βu − 1 + βu1{0<u<1})e
−au Π(du).(2.5)

If Wa and Za are the scale functions associated with X under Pa (or equivalently with ψa(·)). Then, by Lemma
8.4 of [21],

W (r−ψ(a))
a (x) = e−axW (r)(x), x ≥ 0.(2.6)

In particular, by setting a = Φr (or equivalently r = ψ(a)), we can define

WΦr(x) := W
(0)
Φr

(x) = e−ΦrxW (r)(x), x ∈ R(2.7)

which satisfies ∫ ∞
0

e−βxWΦr(x)dx =
1

ψ(β + Φr)− r
, β > 0.

The smoothness and asymptotic behaviors around zero of the scale function are particular important in our
analysis. We summarize these in the remark given immediately below.
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Remark 2.1. (1) Assumption 2.1 guarantees that W (r) is C1 on (0,∞). In particular, when σ > 0, then
W (r) is C2 on (0,∞). Fore more details on the smoothness of the scale function, see Chan et al. [12].

(2) As in Lemmas 4.3 and 4.4 of [22],

W (r)(0) =

{
0, unbounded variation
1
µ , bounded variation

}
,

W (r)′(0+) := lim
x↓0

W (r)′(x) =


2
σ2 , σ > 0

∞, σ = 0 and Π(0,∞) =∞
r+Π(0,∞)

µ2
, compound Poisson

 ,

where µ := c+
∫

(0,1) zΠ(dz), which is finite when X is of bounded variation.

In [17], we have shown that a candidate optimal stopping time can be efficiently identified using the scale
function. Define the expected payoff corresponding to the down-crossing time (2.4) by

uA(x) := u(x, τA), x, A ∈ R,(2.8)

which necessarily equals g(x) for x ≤ A. By combining the compensation formula for Lévy processes and the
resolvent measure written in terms of the scale function, this can be written in a semi-explicit form. Let

Ψf (A) :=

∫ ∞
0

e−Φryf(y +A)dy, A ∈ R,(2.9)

Θf (x;A) :=

{ ∫ x
AW

(r)(x− y)f(y)dy, x > A,

0, x ≤ A,
(2.10)

and

ρ
(r)
g,A :=

∫ ∞
0

Π(du)

∫ u

0
e−Φrz(g(z +A− u)− g(A))dz

≡
∫ ∞

0
Π(du)

∫ u+A

A
e−Φr(y−A)(g(y − u)− g(A))dy, A ∈ R,

ϕ
(r)
g,A(x) :=

∫ ∞
0

Π(du)

∫ u∧(x−A)

0
W (r)(x− z −A)(g(z +A− u)− g(A))dz, x > A.

(2.11)

These integrals are well-defined if∫ ∞
0

e−Φry|f(y)|dy <∞,(2.12)

g ∈ C2, and
∫ ∞

1
Π(du) max

A−u≤ζ≤A
|g(ζ)− g(A)| <∞, A ∈ R.(2.13)

If these are satisfied, we can write uA(x) as in (2.8) for x > A as the sum of the following three terms:

Γ1(x;A) := g(A)

[
Z(r)(x−A)− r

Φr
W (r)(x−A)

]
,

Γ2(x;A) := W (r)(x−A)ρ
(r)
g,A − ϕ

(r)
g,A(x),

Γ3(x;A) := W (r)(x−A)Ψf (A)−Θf (x;A).

(2.14)
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Egami and Yamazaki [17] obtained the first-order condition that makes ∂uA(x)/∂A vanish and showed that it
is equivalent to the continuous fit condition uA(A+) := limx↓A uA(x) = g(A) when X is of bounded variation
and to the smooth fit condition u′A(A+) := limx↓A u

′
A(x) = g′(A) when σ > 0. Recall that X is of bounded

variation if and only if σ = 0 and ∫
(0,∞)

(1 ∧ z) Π(dz) <∞.(2.15)

It has been shown that

uA(A+) = g(A) +W (r)(0)Λ(A), A ∈ R,(2.16)

where

Λ(A) ≡ Λ(A; f, g) := − r

Φr
g(A)− σ2

2
g′(A) + ρ

(r)
g,A + Ψf (A), A ∈ R.(2.17)

In view of Remark 2.1 (2), for the unbounded variation case, continuous fit holds whatever the choice of A is,
while, for the bounded variation case, it holds if and only if Λ(A) = 0.

Furthermore, it has been shown, on condition that there exists some δ > 0 satisfying∫ ∞
1

Π(du) sup
0≤ξ≤δ

|g(A+ ξ)− g(A+ ξ − u)| <∞,(2.18)

we have

∂

∂A
uA(x) = −eΦr(x−A)W ′Φr

(x−A)Λ(A), x > A,(2.19)

where WΦr is defined in (2.7). It is known that WΦr is increasing and hence, if Λ(A) is monotonically increasing,
the down-crossing time τA for the A with Λ(A) = 0 becomes a natural candidate for the optimal stopping time.

2.2. Exponential Case. We first consider the case where g admits the form:

g(x) = K −
N∑
i=1

cie
aix, x ∈ R,(2.20)

for some constants K ∈ R and ci, ai > 0, 1 ≤ i ≤ N . We assume without loss of generality that ai 6= aj for
i 6= j. Because g is bounded on (−∞, B) for any B ∈ R, (2.13) and (2.18) are clearly satisfied. For f , we need a
technical condition so that (2.12) is guaranteed.

Assumption 2.2. Suppose

(1) f(·) is continuous, increasing, f(−∞) := limx↓−∞ f(x) > −∞ and
∫∞

0 e−Φryf+(y)dy <∞;
(2) g(·) admits the form (2.20) for some K ∈ R and strictly positive constants ai and ci, 1 ≤ i ≤ N , such

that ai 6= aj for any i 6= j.

Remark 2.2. For the special case r > max1≤i≤N ψ(ai) or equivalently Φr > maxi=1,...N ai, we can simplify the
problem and rewrite it so that g is a constant and f is an increasing function.
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With Assumption 2.2, we simplify (2.17) using

$r(a) :=

{
r−ψ(a)
Φr−a , a 6= Φr

ψ′(Φr) = lima→Φr

r−ψ(a)
Φr−a , a = Φr

}
, a > 0.(2.21)

By the monotonicity of ψ, $r(a) > 0 for any a > 0. The proof of the following lemma is given in Appendix A.1.

Lemma 2.1. For every A ∈ R, we have

Λ(A) = − r

Φr
K +

N∑
i=1

cie
aiA$r(ai) + Ψf (A).(2.22)

In view of (2.22) above, the function Λ(A) is clearly continuous and increasing. Therefore, if limA↓−∞ Λ(A) <

0 < limA↑∞ Λ(A), there exists a unique root A∗ ∈ R such that Λ(A∗) = 0. Otherwise, let A∗ = −∞ if
limA↓−∞ Λ(A) ≥ 0 and let A∗ =∞ if limA↑∞ Λ(A) ≤ 0.

Remark 2.3. (1) For any stopping time τ ∈ S, recall Assumption 2.2 (1) and notice Ex
[∫ τ

0 e
−rtf(−∞)dt

]
=

f(−∞)
r (1− Ex[e−rτ ]). Therefore, with f̃(x) := f(x)− f(−∞) ≥ 0 and g̃(x) := g(x)− f(−∞)

r ,

u(x) =
f(−∞)

r
+ sup

τ∈S
u(x, τ ; f̃ , g̃).

Because g̃ is decreasing, there exists a unique Ã ∈ [−∞,∞] such that g̃(x) < 0 ⇐⇒ x ∈ (Ã,∞).
Because f̃ is nonnegative, it is easy to see that it is never optimal to stop on (Ã,∞) and hence we can
also write

u(x) =
f(−∞)

r
+ sup

τ∈S
u(x, τ ; f̃ , g̃+).

(2) Applying (2.17) to the pair f̃ and g̃, because f̃ is uniformly positive,

Λ(A; f̃ , g̃) = − r

Φr

(
K − f(−∞)

r

)
+

N∑
i=1

cie
aiA$r(ai) + Ψ

f̃
(A)

≥ − r

Φr

(
K − f(−∞)

r

)
+

N∑
i=1

cie
aiA$r(ai) ≥ −

r

Φr

[
K − f(−∞)

r
−

N∑
i=1

cie
aiA
]

= − r

Φr
g̃(A),

where the second to last inequality holds because, by the convexity of ψ on [0,∞), $r(ai) >
r

Φr
. If

−∞ < Ã < ∞, because Ã is the unique root of − r
Φr
g̃(A) = 0, we must have A∗ ≤ Ã. If Ã = −∞, we

have Λ(A) ≥ − r
Φr
g̃(A) ≥ 0 for all A ∈ R and hence A∗ = −∞.

(3) Except for the case g is a constant, because g̃ decreases to −∞, Ã <∞. Hence (2) implies A∗ <∞.

When −∞ < A∗ <∞, the corresponding expected value becomes (see, e.g., Exercise 8.7 (ii) of [21])

uA∗(x) = K
(
Z(r)(x−A∗)− r

Φr
W (r)(x−A∗)

)
−

N∑
i=1

cie
aix
(
Z(r−ψ(ai))
ai (x−A∗)−$r(ai)W

(r−ψ(ai))
ai (x−A∗)

)
+W (r)(x−A∗)Ψf (A∗)−Θf (x;A∗).
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By how A∗ is chosen in (2.22) and by (2.6), it can be simplified to

uA∗(x) = KZ(r)(x−A∗)−
N∑
i=1

cie
aixZ(r−ψ(ai))

ai (x−A∗)−Θf (x;A∗).(2.23)

The verification of optimality requires the following smoothness properties, whose proofs are given in Appendix
A.2.

Lemma 2.2. Suppose −∞ < A∗ ≤ ∞.

(1) uA∗(x) is C1 on R\{A∗}.
(2) In particular, when X is of unbounded variation, uA∗(x) is C2 on R\{A∗}.

Herein, we add a remark concerning continuous/smooth fit. The following remark confirms the results in [17]
and further verifies that smooth fit holds wheneverX is of unbounded variation even when σ = 0. This observation
only requires the asymptotic behavior of the scale function near zero as in Remark 2.1 (2).

Remark 2.4 (continuous/smooth fit). (1) Continuous fit holds (i.e. uA∗(A∗+) = g(A∗)) because, by (2.23),
Z(r)(0) = Z

(r−ψ(ai))
ai (0) = 1 and limx↓A∗ Θf (x;A∗) = 0.

(2) In particular, when X is of unbounded variation, smooth fit holds (i.e. u′A∗(A
∗+) = g′(A∗)) because

u′A∗(x) = KrW (r)(x−A∗)−
N∑
i=1

cie
aix(r − ψ(ai))W

(r−ψ(ai))
ai (x−A∗)

−
N∑
i=1

aicie
aixZ(r−ψ(ai))

ai (x−A∗)−Θ′f (x;A∗)
x↓A∗−−−→ −

N∑
i=1

aicie
aiA
∗

= g′(A∗)

thanks toW (r)(0) = W
(r−ψ(ai))
ai (0) = 0, Z(r−ψ(ai))

ai (0) = 1 and limx↓A Θ′f (x;A) = 0; see also the proof
of Lemma 2.2.

We now state the main results of this subsection. The proof is given in Appendix A.3.

Proposition 2.1. (1) If −∞ < A∗ < ∞, the stopping time τA∗ := inf {t ≥ 0 : Xt ≤ A∗} is optimal over S
and the value function is u(x) = uA∗(x) as in (2.23) for all x ∈ R.

(2) If A∗ =∞, immediate stopping is always optimal and u(x) = g(x) for any x ∈ R.
(3) If A∗ = −∞, it is never optimal to stop (i.e. τ∗ =∞ is optimal), and the value function is given by

u(x) =

∫ ∞
−∞

(
Φ′re

−Φr(x−y) −W (r)(y − x)
)
f(y)dy,(2.24)

where Φ′r is the derivative of Φr with respect to r.

2.3. For a general concave and decreasing g. We now relax the assumption on g and consider a general concave
and decreasing function g. We also drop the continuity assumption on f .

Assumption 2.3. Suppose

(1) f(·) is increasing such that f(−∞) := limx↓−∞ f(x) > −∞ and
∫∞

0 e−Φryf+(y)dy <∞;
(2) g(·) is twice-differentiable, concave and monotonically decreasing such that (2.13) and (2.18) hold.
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Under this assumption, we see that Λ(A) is increasing. Indeed, we have

∂

∂A

[
− r

Φr
g(A)− σ2

2
g′(A) + ρ

(r)
g,A

]
= − r

Φr
g′(A)− σ2

2
g′′(A) +

∫ ∞
0

Π(du)

∫ u

0
e−Φrz(g′(z +A− u)− g′(A))dz.

This is positive because g′(A) ≤ 0 and g′′(A) ≤ 0 for any A ∈ R and because by the concavity and monotonicity
z + A− u ≤ A for z < u and hence the integral is nonnegative. On the other hand, Ψf (A) is increasing because
f is. Therefore, we again define A∗ in the same way as the unique root of Λ(A) = 0 (if it exists). The proof of the
following result is given in Appendix A.4.

Proposition 2.2. Suppose Assumption 2.3.

(1) When −∞ < A∗ <∞, then τA∗ is optimal over S̃ and the value function is given by

ũ(x) = uA∗(x) = g(A∗)Z(r)(x−A∗) +W (r)(x−A∗)σ
2

2
g′(A∗)− ϕ(r)

g,A∗(x)−Θf (x;A∗), x > A∗.(2.25)

For x ≤ A∗, we have ũ(x) = g(x).
(2) If A∗ =∞, immediate stopping is always optimal and ũ(x) = g(x) for any x ∈ R.
(3) If A∗ = −∞, then τ∗ =∞ is optimal over S and (2.24) holds.

3. MULTIPLE-STAGE PROBLEM

In this section, we extend to the scenario the firm can decrease its involvement in the project in multiple stages
as defined in (1.3). As in the one-stage case, we consider two modes of optimality:

U (M)(x) := sup
(τ (1),...,τ (M))∈SM

M∑
m=1

Ex
[∫ τ (m)

τ (m−1)

e−rtFm(Xt)dt+ e−rτ
(m)
gm(Xτ (m))1{τ (m)<∞}

]
,(3.1)

Ũ (M)(x) := sup
(τ (1),...,τ (M))∈S̃M

M∑
m=1

Ex
[∫ τ (m)

τ (m−1)

e−rtFm(Xt)dt+ e−rτ
(m)
gm(Xτ (m))1{τ (m)<∞}

]
,(3.2)

for all x ∈ R where we define τ (0) := 0 for notational brevity and the supremum is, respectively, over the set of
increasing sequences of M stopping times,

SM := {τ (m) ∈ S, 1 ≤ m ≤M : τ (1) ≤ · · · ≤ τ (M)},

and over the set of increasing sequences of M down-crossing times,

S̃M := {τ (m) = τAm ∈ S̃, 1 ≤ m ≤M : A1 ≥ A2 · · · ≥ AM}.

Clearly, S̃M ⊂ SM and hence Ũ (M) ≤ U (M).
We first consider the case gm admits the form

gm(x) := Km −
Nm∑
i=1

cmie
amix 1 ≤ m ≤M,(3.3)

for some constants Km ∈ R and cmi, ami > 0, 1 ≤ i ≤ Nm, and show the optimality in the sense of (3.1) as
an extension of Proposition 2.1. We then consider a more general case where gm is twice-differentiable, concave
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and monotonically decreasing and show the optimality over S̃M as an extension of Proposition 2.2. Regarding the
running reward function F , define the differences:

fm := Fm − Fm+1, 1 ≤ m ≤M,

with FM+1 ≡ 0. As is also assumed in [9], we consider the case fm is increasing. Using the notation as in (2.3),
we can then write for all x ∈ R

U (M)(x) = sup
(τ (1),...,τ (M))∈SM

M∑
m=1

u(x, τ (m); fm, gm),(3.4)

Ũ (M)(x) = sup
(τ (1),...,τ (M))∈S̃M

M∑
m=1

u(x, τ (m); fm, gm).(3.5)

In summary, we assume Assumptions 3.1 and 3.2 below for (3.1) and (3.2), respectively.

Assumption 3.1. For each 1 ≤ m ≤M , we assume that fm and gm satisfy Assumption 2.2.

Assumption 3.2. For each 1 ≤ m ≤M , we assume that fm and gm satisfy Assumption 2.3.

As is clear from the problem structure, simultaneous stoppings (i.e. τk = · · · = τk+l a.s. for some k and l) may
be optimal in case it is not advantageous to stay in some intermediate stages (i.e. stages k + 1, . . . , k + l). For this
reason, define, for any subinterval I = {min I,min I + 1, . . . ,max I} ⊂ {1, . . . ,M},

gI :=
∑
i∈I

gi and fI := Fmin I − Fmax I+1,(3.6)

and consider an auxiliary one-stage problem (1.2) with g = gI and f = fI . Notice that Assumption 3.1 (resp.
Assumption 3.2) guarantees that fI and gI also satisfy Assumption 2.2 (Assumption 2.3) for any I. Hence Propo-
sitions 2.1 and 2.2 apply.

Let

Λm(A) := Λ(A; fm, gm), A ∈ R, 1 ≤ m ≤M,(3.7)

as the function (2.17) for (fm, gm). Because ρ(r)
h1+h2,A

≡ ρ(r)
h1,A

+ ρ
(r)
h2,A

and Ψh1+h2(A) ≡ Ψh1(A) + Ψh2(A) for
any measurable functions h1 and h2, we see that

ΛI(A) := Λ(A; fI , gI) = Λ
(
A;
∑
m∈I

fm,
∑
m∈I

gm

)
=
∑
m∈I

Λm(A)(3.8)

is increasing and corresponds to the function (2.17) for (fI , gI). In particular, under Assumption 2.2, this reduces
to

ΛI(A) =
∑
m∈I

(
− r

Φr
Km +

Nm∑
i=1

cmie
amiA$r(ami) + Ψfm(A)

)
.

Now let A∗I be the root of ΛI(A) = 0 if it exists. If limA↑∞ ΛI(A) ≤ 0, we set A∗I =∞; if limA↓−∞ ΛI(A) ≥ 0,
we set A∗I = −∞. For simplicity, let A∗m := A∗{m} for any 1 ≤ m ≤M . Also define

uIA(x) := u(x, τA; fI , gI), x, A ∈ R.

With these notations, the following is immediate by Propositions 2.1 and 2.2.
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Corollary 3.1. Fix any I and x ∈ R, and consider the problems:

uI(x) := sup
τ∈S

u(x, τ ; fI , gI) and ũI(x) := sup
τ∈S̃

u(x, τ ; fI , gI).

Suppose Assumption 3.1.

(1) If −∞ < A∗I <∞, then

uI(x) = uIA∗I
(x) =

∑
m∈I

(
KmZ

(r)(x−A∗I)−
Nm∑
i=1

cmie
amixZ(r−ψ(ami))

ami
(x−A∗I)

)
−ΘfI (x;A∗I),

and the stopping time τA∗I := inf {t > 0 : Xt ≤ A∗I} is optimal.
(2) If A∗I =∞, uI(x) = gI(x) for any x ∈ R with optimal stopping time τ∗ = 0.
(3) If A∗I = −∞, it is never optimal to stop, and the value function is given by

uI(x) =

∫ ∞
−∞

(
Φ′re

−Φr(x−y) −W (r)(y − x)
)
fI(y)dy.(3.9)

Suppose Assumption 3.2.

(1) If −∞ < A∗I <∞, then

ũI(x) = uIA∗I
(x) = gI(A

∗
I)Z

(r)(x−A∗I) +W (r)(x−A∗I)
σ2

2
g′I(A

∗
I)− ϕ

(r)
gI ,A

∗
I
(x)−ΘfI (x;A∗I), x > A∗I ,

with the optimal stopping time τA∗I . For x ≤ A∗I , we have ũ(x) = g(x).
(2) If A∗I =∞, ũI(x) = gI(x) for any x ∈ R with optimal stopping time τ∗ = 0.
(3) If A∗I = −∞, then τ∗ =∞ is optimal over S and (3.9) holds.

3.1. Two-stage problem. In order to gain intuition, we first consider the case withM = 2 and obtain U (2)(x) and
Ũ (2)(x) under Assumptions 3.1 and 3.2, respectively. Following the procedures discussed above, A∗m ∈ [−∞,∞],
or the root of Λm(A) = 0, is well-defined for m = 1, 2. As a special case of (3.6),

f2 ≡ F2, f1 ≡ F1 − F2 ≡ F1 − f2, and f{1,2} ≡ F1 ≡ f1 + f2.(3.10)

We shall consider the cases (i) A∗1 > A∗2 and (ii) A∗1 ≤ A∗2, separately. For (i), we shall show that (τA∗1 , τA∗2) is
optimal. For (ii), we shall show that simultaneous stoppings are optimal. We first consider the former.

Proposition 3.1. If∞ ≥ A∗1 > A∗2 ≥ −∞, then (τA∗1 , τA∗2) is optimal; the value function is given by U (2)(x) =∑
m=1,2 u

{m}
A∗m

(x) and Ũ (2)(x) =
∑

m=1,2 u
{m}
A∗m

(x) under Assumptions 3.1 and 3.2, respectively. In particular,
under Assumption 3.1 and if∞ > A∗1 > A∗2 > −∞,

(3.11) U (2)(x) =
∑
m=1,2

(
KmZ

(r)(x−A∗m)−
Nm∑
i=1

cmie
amixZ(r−ψ(ami))

ami
(x−A∗m)

)
−
∫ x

A∗1

W (r)(x− y)F1(y)dy −
∫ A∗1

A∗2

W (r)(x− y)F2(y)dy.



12 K. YAMAZAKI

Proof. Suppose Assumption 3.1 holds. By relaxing the constraint that τ (1) ≤ τ (2), we can obtain an upper bound:

U (2)(x) ≤ U (2)
(x) :=

∑
m=1,2

sup
τ (m)∈S

u(x, τ (m); fm, gm) =
∑
m=1,2

u
{m}
A∗m

(x),

where the last equality holds by Corollary 3.1. On the other hand, because τA∗1 ≤ τA∗2 a.s. (hence (τA∗1 , τA∗2) ∈ S2)

thanks to A∗1 > A∗2, we have U (2)(x) ≥ U
(2)

(x), as desired. The same result holds under Assumption 3.2 by
relaxing the constraint that A1 ≥ A2 and noticing that (τA∗1 , τA∗2) ∈ S̃2.

For the second claim, because A∗1 > A∗2 and by (3.10),∑
m=1,2

Θfm(x,A∗m) =
∑
m=1,2

∫ x

A∗m

W (r)(x− y)fm(y)dy =

∫ x

A∗1

W (r)(x− y)F1(y)dy +

∫ A∗1

A∗2

W (r)(x− y)F2(y)dy,

and hence (3.11) holds in view of Corollary 3.1.
�

Now consider the case −∞ ≤ A∗1 ≤ A∗2 ≤ ∞.

Lemma 3.1. Suppose −∞ ≤ A∗1 ≤ A∗2 ≤ ∞. Under Assumption 3.1 (resp. Assumption 3.2), the first optimal
stopping cannot occur on (A∗2,∞); namely if τ∗(1) is the optimal first stopping time in the sense of (3.1) ((3.2)),
then Xτ∗(1) ∈ (−∞, A∗2] a.s. on {τ∗(1) <∞}.

Proof. The result is immediate when A∗2 =∞ and hence we assume A∗2 <∞.
Suppose Assumption 3.1 holds, and in order to derive a contradiction, we suppose there exists some x̂ > A∗2 at

which it is optimal to stop. Under this assumption, the value function must satisfy

U (2)(x̂) = g1(x̂) + sup
τ∈S

u(x̂, τ ; f2, g2) = g1(x̂) + u
{2}
A∗2

(x̂).(3.12)

We shall show that this is in fact smaller than u{1}A∗2 (x̂) + u
{2}
A∗2

(x̂), which is the value obtained by (τ (1), τ (2)) =

(τA∗2 , τA∗2) ∈ S̃2 ⊂ S2. By (2.16) and (2.19),

Λ1(A) ≤ (≥)0 =⇒ ∂

∂A
u
{1}
A (x̂) ≥ (≤)0 ∀A < x̂,(3.13)

u
{1}
A (A+) = g1(A) +W (r)(0)Λ1(A).(3.14)

By (3.13)-(3.14) and because A∗1 ≤ A∗2 < x̂ and Λ1 is increasing,

u
{1}
A∗2

(x̂) > lim
A↑x̂

u
{1}
A (x̂) = g1(x̂) +W (r)(0)Λ1(x̂) ≥ g1(x̂).

Regarding the last inequality, for the unbounded variation case, it holds because W (r)(0) = 0 by Remark 2.1 (2).
For the bounded variation case, it also holds because (3.13) and x̂ > A∗1 imply Λ1(x̂) > 0. Therefore, we get, by
(3.12), U (2)(x̂) < u

{1}
A∗2

(x̂) + u
{2}
A∗2

(x̂) leading to a contradiction. Because x̂ is arbitrary on (A∗2,∞), we have the

claim. The same contradiction can be derived under Assumption 3.2 because (τA∗2 , τA∗2) ∈ S̃2. �

The following lemma suggests under −∞ ≤ A∗1 ≤ A∗2 ≤ ∞ that the optimal strategy is the simultaneous
stopping corresponding to the threshold level A∗{1,2}, which is the value that makes Λ{1,2} ≡ Λ1 + Λ2 as in (3.8)
vanish.
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Proposition 3.2. Suppose −∞ ≤ A∗1 ≤ A∗2 ≤ ∞.

(1) We have A∗1 ≤ A∗{1,2} ≤ A
∗
2.

(2) It is optimal to stop simultaneously and the value function is given by U (2)(x) = u
{1,2}
A∗{1,2}

(x) under As-

sumption 3.1 and Ũ (2)(x) = u
{1,2}
A∗{1,2}

(x) under Assumption 3.2.

Proof. (1) Because both Λ1 and Λ2 are increasing, Λ{1,2} is increasing as well. Because A∗1 ≤ A∗2, Λ1(A∗2) ≥ 0

and hence Λ{1,2}(A
∗
2) ≥ 0. Similarly, Λ{1,2}(A

∗
1) ≤ 0. The increasing property of Λ{1,2} now shows the claim.

(2) Under Assumption 3.1, for any pair of stopping times (τ (1), τ (2)) ∈ S2, because F2 = f2 as in (3.10) and by
the strong Markov property of the Lévy process X ,

Ex
[ ∑
m=1,2

e−rτ
(m)
gm(Xτ (m))1{τ (m)<∞} +

∫ τ (1)

0
e−rtF1(Xt)dt+

∫ τ (2)

τ (1)
e−rtF2(Xt)dt

]

= Ex
[
e−rτ

(1)
g1(Xτ (1))1{τ (1)<∞} +

∫ τ (1)

0
e−rtF1(Xt)dt

+ 1{τ (1)<∞}e
−rτ (1)E

[
e−r(τ

(2)−τ (1))g2(Xτ (2))1{τ (2)<∞} +

∫ τ (2)−τ (1)

0
e−rtF2(Xt)dt

∣∣∣Fτ (1)]]
≤ Ex

[
e−rτ

(1)
g1(Xτ (1))1{τ (1)<∞} +

∫ τ (1)

0
e−rtF1(Xt)dt+ 1{τ (1)<∞}e

−rτ (1) sup
τ∈S

u(Xτ (1) , τ ; f2, g2)
]

= u(x, τ (1);F1, g1 + u
{2}
A∗2

).

(3.15)

Similarly, under Assumption 3.2, (3.15) also holds for any (τ (1), τ (2)) ∈ S̃2 by replacing S with S̃ in the
expectation of the third term. This together with Lemma 3.1, shows U (2)(x) (resp. Ũ (2)(x)) is less than or equal to

sup
τ∈S(A∗2)

u(x, τ ;F1, g1 + u
{2}
A∗2

)(3.16)

under Assumption 3.1 (Assumption 3.2) where S(A∗2) is the set of τ ∈ S (τ ∈ S̃) such that Xτ ∈ (−∞, A∗2] a.s.
on {τ < ∞}. Because, for any τ ∈ S(A∗2), u{2}A∗2 (Xτ ) = g2(Xτ ) a.s. on {τ < ∞} and because F1 = f{1,2} as in
(3.10), (3.16) equals

sup
τ∈S(A∗2)

u(x, τ ; f{1,2}, g{1,2}) ≤ sup
τ∈S

u(x, τ ; f{1,2}, g{1,2}) = u
{1,2}
A∗{1,2}

(x),

by Corollary 3.1 and because S(A∗2) ⊂ S . Namely, U (2)(x) ≤ u
{1,2}
A∗{1,2}

(x) under Assumption 3.1 and Ũ (2)(x) ≤

u
{1,2}
A∗{1,2}

(x) under Assumption 3.2. These in fact hold with equality because u{1,2}A∗{1,2}
(x) is attained by (τA∗{1,2} , τA

∗
{1,2}

) ∈

S̃2 ⊂ S2.
�
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3.2. Multiple-stage problem. We now generalize to the multiple-stage problem and solve (3.1)-(3.2) or equiva-
lently (3.4)-(3.5) with M ≥ 3. For 1 ≤ m ≤M , let

U (M)
m (x) := sup

(τ (m),...,τ (M))∈SM−m+1

M∑
k=m

u(x, τ (k); fk, gk),(3.17)

Ũ (M)
m (x) := sup

(τ (m),...,τ (M))∈S̃M−m+1

M∑
k=m

u(x, τ (k); fk, gk).(3.18)

In particular, U (M) ≡ U (M)
1 and Ũ (M) ≡ Ũ (M)

1 , and by Corollary 3.1

U
(M)
M (x) = sup

τ∈S
u(x, τ ; fM , gM ) = u

{M}
A∗M

(x) and Ũ
(M)
M (x) = sup

τ∈S̃
u(x, τ ; fM , gM ) = u

{M}
A∗M

(x),(3.19)

under Assumptions 3.1 and 3.2, respectively. The expressions for U (M)
M−1 and Ũ (M)

M−1 can also be obtained as in the
two-stage case.

Given 1 ≤ m ≤ M , let us partition {m,m + 1, . . . ,M} to an L(m) number of (non-empty) disjoint sets
Im := {I(k;m), 1 ≤ k ≤ L(m)} such that

{m,m+ 1, . . . ,M} = I(1;m) ∪ · · · ∪ I(L(m);m)

where, if L(m) = 1, I(1;m) = {m, . . . ,M} and, if L(m) ≥ 2,

I(1;m) := {m, . . . , n1,m − 1},

I(l;m) := {nl−1,m, . . . , nl,m − 1}, 2 ≤ l ≤ L(m)− 1,

I(L(m);m) := {nL(m)−1,m, . . . ,M},

for some integers m < n1,m < · · · < nL(m)−1,m < M . We consider the strategy such that, if k and l are in the
same set, then the k-th and l-th stops occur simultaneously a.s.

We shall show that (3.17) and (3.18), for any 1 ≤ m ≤ M , can be solved by a strategy with some partition
I∗m := {I∗(k;m), 1 ≤ k ≤ L∗(m)} satisfying

A∗I∗(1;m) > · · · > A∗I∗(L∗(m);m),

where A∗I is defined as in (3.8) for any set I. The corresponding expected value becomes

U
(M)
m,I∗m(x) :=

L∗(m)∑
k=1

u(x, τA∗I∗(k;m)
; fI∗(k,m), gI∗(k;m)) =

L∗(m)∑
k=1

u
I∗(k;m)
A∗I∗(k;m)

(x),(3.20)

whose strategy is given by for any m ≤ n ≤M ,

τ∗(n) = τA∗I∗(k;m)
for the unique 1 ≤ k ≤ L∗(m) such that n ∈ I∗(k;m).

We shall show that (3.20) is optimal, i.e. U (M)
m = U

(M)
m,I∗m under Assumption 3.1 and Ũ (M)

m = U
(M)
m,I∗m under

Assumption 3.2 for any 1 ≤ m ≤M . Moreover, I∗m can be obtained inductively moving backwards starting from
I∗M with L∗(M) = 1 and I∗(1;M) = {M}. For the inductive step, the following algorithm outputs I∗m−1 from

I∗m for any 2 ≤ m ≤M . By repeating this, we can obtain the partition I∗1 ; the resulting U (M)
1,I∗1

as in (3.20) becomes

the value function U (M) = U
(M)
1 .
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Algorithm I∗m−1 = Update(I∗m,m)

Step 1: Set i = 1.
Step 2: Set

Î :=

{
{m− 1}, i = 1,

{m− 1} ∪ I∗(1;m) ∪ · · · ∪ I∗(i− 1;m), i ≥ 2.

Step 3: Compute A∗Î and
(1) if i = L∗(m) + 1, then stop and return I∗m−1 = {I∗(1;m − 1)} with L∗(m − 1) = 1 and
I∗(1;m− 1) = {m− 1, . . . ,M};

(2) if A∗Î > A∗I∗(i;m), then stop and return I∗m−1 = {I∗(k;m − 1), 1 ≤ k ≤ L∗(m − 1)} with
L∗(m− 1) = L∗(m)− i+ 2 and

I∗(1;m− 1) = Î and I∗(l;m− 1) = I∗(l + i− 2;m), 2 ≤ l ≤ L∗(m− 1);(3.21)

(3) if A∗Î ≤ A
∗
I∗(i;m), set i = i+ 1 and go back to Step 2.

The role of the algorithm is in words to extend from n(= M−m+1)-stage problem to n+1(= M−m+2)-stage
problem. The idea is similar to what we discussed in the previous section how to extend from a one-stage problem
to a two-stage problem. When a new initial stage is added, the corresponding threshold valueA∗Î is first calculated.
Depending on whether its value is higher than that of the subsequent stages or not, simultaneous stoppings may
become optimal. For n larger than two, we must solve it recursively by keeping updating the set Î, or the set of
the first (simultaneous) stoppings, as given in this algorithm. If A∗Î is low, the strategy of the new initial stage
may naturally depend on the strategies of all the subsequent stages. Unlike the extension to the two-stage problem
which only needs to take into account the strategy of the stage immediately next, it needs to reflect the strategies
of all subsequent stages.

We prove the following under Assumption 3.1 for the optimality (3.1). As is already clear after the detailed
discussion on the two-stage case, only a slight modification is needed for (3.2) under Assumption 3.2.

Lemma 3.2. In view of the algorithm above, suppose Assumption 3.1 and fix 2 ≤ m ≤M . Given that I∗m satisfies,
for every 1 ≤ l ≤ L∗(m),

U
(M)
min I∗(l;m)(x) =

L∗(m)∑
k=l

u
I∗(k;m)
A∗I∗(k;m)

(x),(3.22)

and is used as an input in the algorithm. Then, we have the following.

(1) At the end of Step 2, if 1 ≤ i ≤ L∗(m),

U
(M)
m−1(x) ≤ sup

τ∈S

[
u(x, τ ; fÎ , gÎ) +

L∗(m)∑
k=i

u(x, ϑτ (A∗I∗(k;m)); fI∗(k;m), gI∗(k;m))
]

(3.23)

where ϑν(A) := ν+τA◦θν for any ν ∈ S andA ∈ R with the time-shift operator θt, and if i = L∗(m)+1

U
(M)
m−1(x) = sup

τ∈S
u(x, τ ; fÎ , gÎ) = u

{m−1,...,M}
A∗{m−1,...,M}

(x).
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(2) Let I∗m−1 be produced by the algorithm. For any 1 ≤ l ≤ L∗(m− 1),

U
(M)
min I∗(l;m−1)(x) =

L∗(m−1)∑
k=l

u
I∗(k;m−1)
A∗I∗(k;m−1)

(x).(3.24)

Proof. (1) We shall show by mathematical induction.
(Base-step) Suppose i = 1. By our assumption (3.22) and by an argument similar to (3.15),

U
(M)
m−1(x) ≤ sup

τ∈S
Ex
[
e−rτgm−1(Xτ )1{τ<∞} +

∫ τ

0
e−rtFm−1(Xt)dt+ e−rτU (M)

m (Xτ )1{τ<∞}

]
= sup

τ∈S

[
u(x, τ ; fm−1, gm−1) +

L∗(m)∑
k=1

u(x, ϑτ (A∗I∗(k;m)); fI∗(k;m), gI∗(k;m))
]
.

Now (3.23) holds because Î = {m− 1} for i = 1.
(Inductive-step) Now we assume (3.23) for i = j ≤ L∗(m)−1, i.e., Î = {m−1}∪I∗(1;m)∪· · ·∪I∗(j−1;m)

and

U
(M)
m−1(x) ≤ sup

τ∈S

[
u(x, τ ; fÎ , gÎ) +

L∗(m)∑
k=j

u(x, ϑτ (A∗I∗(k;m)); fI∗(k;m), gI∗(k;m))
]
,(3.25)

and show that it will hold for i = j + 1.
Because when A∗Î > A∗I∗(j;m) the algorithm stops at j and never returns to Step 2, we suppose here that

A∗Î ≤ A
∗
I∗(j;m). In view of the right-hand side of (3.25), if there exists some x̂ > A∗I∗(j;m) at which it is optimal to

stop, then the value function becomes gÎ(x̂)+U
(M)
min I∗(j;m)(x̂) by our assumption (3.22). Using the same reasoning

as in Lemma 3.1, this is in fact smaller than uÎA∗I∗(j;m)
(x̂) + U

(M)
min I∗(j;m)(x̂). Hence is is never optimal to stop on

(A∗I∗(j;m),∞) for the optimization problem on the right-hand side of (3.25) (see also the proof of Proposition 3.2).
Now let S(A∗I∗(j;m)) be the set of all stopping times at whichX ∈ (−∞, A∗I∗(j;m)] a.s. For all τ ∈ S(A∗I∗(j;m)),

we have τ = ϑτ (A∗I∗(j;m)) a.s. and hence u(x, ϑτ (A∗I∗(j;m)); fI∗(j;m), gI∗(j;m)) = u(x, τ ; fI∗(j;m), gI∗(j;m)).
Therefore (3.25) implies

U
(M)
m−1(x) ≤ sup

τ∈S(A∗I∗(j;m)
)

[
u(x, τ ; fÎ∪I∗(j;m), gÎ∪I∗(j;m)) +

L∗(m)∑
k=j+1

u(x, ϑτ (A∗I∗(k;m)); fI∗(k;m), gI∗(k;m))
]

≤ sup
τ∈S

[
u(x, τ ; fÎ∪I∗(j;m), gÎ∪I∗(j;m)) +

L∗(m)∑
k=j+1

u(x, ϑτ (A∗I∗(k;m)); fI∗(k;m), gI∗(k;m))
]
.

Hence, (3.23) holds for i = j + 1, as desired. This proves (1) by mathematical induction.
(2) When the algorithm stops, it is either (i) i = L∗(m) + 1 at Step 3 (1) or (ii) A∗Î > A∗I∗(i;m) at Step 3 (2).

(i) Suppose i = L∗(m) + 1. In this case, Î = {m− 1, . . . ,M} and, by (3.23),

U
(M)
min I∗(1;m−1)(x) = U

(M)
m−1(x) ≤ sup

τ∈S
u(x, τ ; f{m−1,...,M}, g{m−1,...,M}) = u

{m−1,...,M}
A∗{m−1,...,M}

(x),

which in fact holds by equality because the right-hand side is attained by (τA∗{m−1,...,M}
, . . . , τA∗{m−1,...,M}

) ∈
S̃M−m+2 ⊂ SM−m+2.



CONTRACTION OPTIONS IN SPECTRALLY NEGATIVE LÉVY MODELS 17

(ii) Suppose the algorithm exits at i with A∗Î > A∗I∗(i;m). By (3.23), we have

U
(M)
m−1(x) ≤ sup

τ∈S
u(x, τ ; fÎ , gÎ) + sup

τ∈S

L∗(m)∑
k=i

u(x, ϑτ (A∗I∗(k;m)); fI∗(k;m), gI∗(k,m)).

Regarding the second supremum of the right-hand side, the strategy {τ (l); min I∗(i,m) ≤ l ≤ M}, defined by
τ (l) = ϑτ (A∗I∗(k;m)) for the unique i ≤ k ≤ L∗(m) such that l ∈ I∗(k;m), is feasible (or in SM+1−min I∗(i,m))
for any stopping time τ ∈ S and therefore

sup
τ∈S

L∗(m)∑
k=i

u(x, ϑτ (A∗I∗(k;m)); fI∗(k;m), gI∗(k,m))

≤ sup
(τ (min I∗(i,m)),...,τ (M))∈SM+1−min I∗(i,m)

M∑
k=min I∗(i;m)

u(x, τ (k); fk, gk) = U
(M)
min I∗(i;m)(x).

Hence, we obtain a bound U (M)
m−1(x) ≤ uÎA∗

Î
(x) + U

(M)
min I∗(i;m)(x). This together with (3.21) and (3.22) shows

U
(M)
m−1(x) ≤ uÎA∗

Î
(x) +

L∗(m)∑
k=i

u
I∗(k;m)
A∗I∗(k;m)

(x) =

L∗(m−1)∑
k=1

u
I∗(k;m−1)
A∗I∗(k;m−1)

(x).

This holds by equality because the left-hand side is attained by a feasible strategy defined by I∗m−1. This shows
(3.24) for case l = 1.

On the other hand, for any 2 ≤ l ≤ L∗(m− 1), by (3.21) and (3.22),

U
(M)
min I∗(l;m−1)(x) = U

(M)
min I∗(l+i−2;m)(x) =

L∗(m)∑
k=l+i−2

u
I∗(k;m)
A∗I∗(k;m)

(x) =

L∗(m−1)∑
k=l

u
I∗(k;m−1)
A∗I∗(k;m−1)

(x),

which guarantees (3.24), as desired.
�

Using Lemma 3.2 as an inductive step, the main theorem is immediate. Indeed, (3.22) holds trivially for M by
Corollary 3.1. By applying the algorithm M − 1 times, we can obtain (3.1) for M − 1,M − 2, . . . , 1.

Theorem 3.1. Let {I∗m; 1 ≤ m ≤M} be produced by the algorithm.

(1) Under Assumption 3.1, for every 1 ≤ m ≤M and 1 ≤ i ≤ L∗(m),

U
(M)
min I∗(i;m)(x) =

L∗(m)∑
k=i

u
I∗(k;m)
A∗I∗(k;m)

(x).

In particular,

U (M)(x) ≡ U (M)
min I∗(1;1)(x) =

L∗(1)∑
k=1

u
I∗(k;1)
A∗I∗(k;1)

(x).(3.26)
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(2) Under Assumption 3.2, for every 1 ≤ m ≤M and 1 ≤ i ≤ L∗(m),

Ũ
(M)
min I∗(i;m)(x) =

L∗(m)∑
k=i

u
I∗(k;m)
A∗I∗(k;m)

(x).

In particular,

Ũ (M)(x) ≡ Ũ (M)
min I∗(1;1)(x) =

L∗(1)∑
k=1

u
I∗(k;1)
A∗I∗(k;1)

(x).(3.27)

4. HYPEREXPONENTIAL JUMP DIFFUSION CASE AND NUMERICAL EXAMPLES

In this section, we consider spectrally negative Lévy processes with i.i.d. hyperexponential jumps and provide
numerical examples. If a Lévy measure has a completely monotone density, it can be approximated arbitrarily
closely by that of a compound Poisson process with hyperexponential jumps (see, e.g., [18, 19]). In a related work,
Asmussen et al. [3] approximate the Lévy density of the CGMY process by a hyperexponential density. Herein,
we will use the explicit expression of the scale function obtained by [18].

4.1. Spectrally Negative Lévy Processes with Hyperexponential Jumps. Let X be a spectrally negative Lévy
process of the form

(4.1) Xt −X0 = µt+ σBt −
Nt∑
n=1

Zn, 0 ≤ t <∞.

Here B = {Bt; t ≥ 0} is a standard Brownian motion, N = {Nt; t ≥ 0} is a Poisson process with arrival rate λ,
and Z = {Zn;n = 1, 2, . . .} is an i.i.d. sequence of hyperexponential random variables with density function

h(z) :=
J∑
j=1

pjηje
−ηjz, z > 0,

for some p1 + · · ·+ pJ = 1 and 0 < η1 < · · · < ηJ <∞. Its Laplace exponent (2.1) is given by

ψ(s) = µs+
1

2
σ2s2 − λ

J∑
j=1

pj
s

ηj + s
, s ∈ R.

In particular, this reduces to a Brownian motion when J = 0 and to (spectrally negative) exponential jump diffusion
when J = 1.

For our examples, we assume σ > 0; see [18] for the case σ = 0. In this case, there are J + 1 negative solutions
to the equation ψ(s) = r and their absolute values {ξi,r; i = 1, . . . , J + 1} satisfy the interlacing condition:
0 < ξ1,r < η1 < ξ2,r < · · · < ηJ < ξJ+1,r <∞. For this process, the scale functions are given by

W (r)(x) =
J+1∑
i=1

Ci

[
eΦrx − e−ξi,rx

]
and Z(r)(x) = 1 + r

J+1∑
i=1

Ci

[
1

Φr

(
eΦrx − 1

)
+

1

ξi,r

(
e−ξi,rx − 1

)](4.2)
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for every x ≥ 0 where

Ci := Ai,r
2

σ2
∑J+1

k=1 Ak,rξk,r

(
ξi,r

Φr + ξi,r

)
with Ai,r :=

∏
j∈{1,...,J}

(
1− ξi,r

ηj

)
∏
l∈{1,...,J+1}\{i}

(
1− ξi,r

ξl,r

) , 1 ≤ i ≤ J + 1.

With Φ
(c)
r := Φr − c and ξ(c)

i,r := ξi,r + c, 1 ≤ i ≤ J + 1, for any c ≥ 0, we have by (2.6) for any x ≥ 0

W (r−ψ(c))
c (x) =

J+1∑
i=1

Ci

[
eΦ

(c)
r x − e−ξ

(c)
i,r x
]
,

Z(r−ψ(c))
c (x) = 1 + (r − ψ(c))

J+1∑
i=1

Ci

[ 1

Φ
(c)
r

(eΦ
(c)
r x − 1) +

1

ξ
(c)
i,r

(e−ξ
(c)
i,r x − 1)

]
.

(4.3)

Thanks to their forms as sums of exponential functions, the value function we obtain below admits closed forms.

4.2. Numerical results on the one-stage problem. We first consider the one-stage problem as studied in Section
2. In our numerical examples, we consider two examples for g:

(a) mixture of exponential functions: g(exp) as in (2.20);
(b) linear function: g(lin)(x) := −αx+ β, x ∈ R, for some α > 0 and β ∈ R.

It is clear that g(lin) satisfies Assumption 2.3 (2). Regarding f , we consider the following three examples:

(i) simple function: f (sim)(y) :=
∑
−∞<n<∞ f

(n)1In(y) for some constants · · · < f (−2) < f (−1) < f (0) <

f (1) < f (2) < · · · such that −∞ < limn↓−∞ f
(n) ≤ limn↑∞ f

(n) <∞ and subdivisions In := (ln, ln+1]

of R;
(ii) linear function with a lower bound: f (lin)(y) := b1[(y + b2) ∨ b3] for some b1 > 0 and b2, b3 ∈ R;

(iii) exponential function with an upper bound: f (exp)(y) := e(Ly)∧B for some L > 0 and B ∈ R.

These satisfy Assumption 2.3 (1) and in particular (ii) and (iii) satisfy Assumption 2.2 (1). Hence Proposition 2.2
holds (or ũ = uA∗) for any choice and in particular Proposition 2.1 holds (or u = ũ = uA∗) for (a) with (ii) or (iii).

In order to implement the optimal strategy, we first obtain A∗ using (2.17) (or (2.22) for (a)) and then compute
the value function via (2.25) (or (2.23) for (a)). Toward this end, we need to compute ρ(r)

g(lin),A
and ϕ(r)

g(lin),A
(x)

and Ψf (A) and Θf (x;A) for (i)-(iii). The proofs of the following two lemmas are tedious but straightforward and
hence omitted.

Lemma 4.1. (1) For every A ∈ R, we have

ρ
(r)

g(lin),A
= −αλ

Φ2
r

1−
J∑
j=1

pj

(
ηj

ηj + Φr
+

Φr

ηj

) .
(2) For all x ≥ A,

ϕ
(r)

g(lin),A
(x) = αλ

J+1∑
i=1

Ci

J∑
j=1

pj

[
1

ηj(ηj + Φr)
(eΦr(x−A) − e−ηj(x−A))− 1

ηj(ηj − ξi,r)
(e−ξi,r(x−A) − e−ηj(x−A))

]
.
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Define, for any s < t and k ≥ 0,

w
(k)
x,A(s, t) :=

J+1∑
i=1

Ci

[ 1

Φ
(k)
r

(
eΦ

(k)
r (x−s∨A)+ − eΦ

(k)
r (x−t∨A)+

)
+

1

ξ
(k)
i,r

(
e−ξ

(k)
i,r (x−s∨A)+ − e−ξ

(k)
i,r (x−t∨A)+

)]
.

This vanishes whenever [s, t] ∩ [A, x] = ∅. Also let for any s < t and a ∈ R, γ(a)(s, t) :=
∫ t
s ye

aydy =(
t
a −

1
a2

)
eat −

(
s
a −

1
a2

)
eas.

Lemma 4.2. (1) For every A ∈ R,

Ψf (sim)(A) =
1

Φr

∑
−∞<n<∞

f (n)
[
e−Φr(ln−A)+ − e−Φr(ln+1−A)+

]
,

Ψf (lin)(A) = b1

[
b3
Φr

(1− e−Φr[b3−(b2+A)]+) +
b2 +A

Φr
e−Φr[b3−(b2+A)]+ + e−Φr[b3−(b2+A)]+

[ [b3 − (b2 +A)]+
Φr

+
1

Φ2
r

]]
,

Ψf (exp)(A) =
eB

Φr
e−Φr(B

L
−A)+ +

eLA

Φ
(L)
r

[
1− e−Φ

(L)
r (B

L
−A)+

]
.

In particular, for any sufficiently small b3, Ψf (lin)(A) = b1

[
b2+A

Φr
+ 1

Φ2
r

]
.

(2) For every x,A ∈ R,

Θf (sim)(x;A) =
∑

−∞<n<∞
f (n)w

(0)
x,A(ln, ln+1),

Θf (lin)(x;A) = b1

[
b3w

(0)
x,A(A, (b3 − b2) ∨A ∧ x) + b2w

(0)
x,A((b3 − b2) ∨A ∧ x, x)

]
+ b1

J+1∑
i=1

Ci[e
Φrxγ(−Φr)((b3 − b2) ∨A ∧ x, x)− e−ξi,rxγ(ξi,r)((b3 − b2) ∨A ∧ x, x)],

Θf (exp)(x;A) = w
(0)
x,A(A ∨ (B/L) ∧ x, x) + w

(L)
x,A(A,A ∨ (B/L) ∧ x).

We are now ready to show our numerical results for the one-stage problem. Throughout the results given below,
we use the common Lévy process of the form (4.1) with µ = 1, σ = 0.2, J = 2, p = [0.1, 0.9], η = [1, 20] and
λ = 5. Namely, this is a hyperexponential Lévy process with two kinds of negative jumps: frequent and small
jumps and infrequent and large jumps. For g and f , we consider any combination of the following:

(a) g = g(exp) with a = [0.1, 0.2, 0.3, 0.4] and c = [4, 3, 2, 1];
(b) f = g(lin) with α = 1 and β = 0;

and

(i) f = γf (sim) with I1 = (−∞, 0), I2 = [0,∞), f (1) = −10 and f (2) = 10;
(ii) f = γf (lin) with b1 = 1 and b2 = 0 with sufficiently small b3;

(iii) f = γf (exp) with L = B = 1;

for the weight parameter γ = 0, 0.05, 0.1.
The results for (a) g = g(exp) and (b) g = g(lin) are graphically shown in Figures 1 and 2, respectively. In each

figure, we plot the function Λ(·) as in (2.17) and the value function uA∗ for each choice of f . As can be confirmed,
the function Λ(·) is indeed monotonically increasing and hence the unique root A∗ of Λ(A) = 0 can be obtained
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easily by the bisection method. Using these optimal threshold levels, the value functions are computed via (2.23)
and (2.25) using Lemmas 4.1 and 4.2.

We see that the value functions are differentiable even at the optimal threshold levels A∗ and this confirms the
smooth fit as in Remark 2.4 because X is of unbounded variation with σ > 0. In particular, for the case γ = 0

with no running reward (f ≡ 0), because the stopping value decreases to −∞ as x increases, the value function
converges to zero as x increases. For f (sim) with a discontinuity at zero, the value function turns out to have a kink
at zero although it still appears to be differentiable. While these computations require bisection-type methods to
obtain ξi,r’s, Φr and A∗, these can be solved instantaneously.

In order to verify that these are indeed optimal, we focus on the case γ = 0.05 and plot in Figure 3 the value
function uA∗ in comparison with the expected values of “perturbed” strategies uA(·) forA = A∗−2, A∗−1, A∗+

1, A∗ + 2. Notice that these can be computed as the sum of Γ’s as in (2.14). For any choice of A, it is easy to see
that uA is continuous as in Remark 2.4 but fails to be differentiable at A 6= A∗. We can confirm in all six cases
that uA∗ indeed dominates uA for A 6= A∗ uniformly in x ∈ R. This numerically verifies Propositions 2.1 and 2.2.

4.3. Numerical results on the multiple-stage problem. We now move onto the multiple-stage problem. We
assume M = 3 for brevity and use for f and g the functions (a)-(b) and (i)-(iii) defined for the one-stage problem.

We first verify (3.26) or the optimality over S3 for the case, for each 1 ≤ m ≤ 3, (a) gm = g(exp) for some
am = (ami)1≤i≤Nm and cm = (cmi)1≤i≤Nm with Nm = 4, and either (ii) fm = γmf

(lin) with b1 = 1 and b2 = 0

with sufficiently small b3 or (iii) fm = γmf
(exp) with L = B = 1 for some γm > 0.

We conduct a number of experiments for various values of {am, cm, γm, 1 ≤ m ≤ 3}. By using the al-
gorithm given in Subsection 3.2, the optimal threshold levels A∗ = (A∗(1), A∗(2), A∗(3)) takes values among
{A∗1, A∗2, A∗3, A∗{1,2}, A

∗
{2,3}, A

∗
{1,2,3}} and satisfy one of the following four cases:

Case 1: A∗(1) = A∗(2) = A∗(3);
Case 2: A∗(1) > A∗(2) = A∗(3);
Case 3: A∗(1) = A∗(2) > A∗(3);
Case 4: A∗(1) > A∗(2) > A∗(3).

Here we use a random random number generator to sample am, cm and γm for each 1 ≤ m ≤ 3 and also
the choice of f (lin)/f (exp) until we attain each of Cases 1 to 4. The generated parameters and the corresponding
threshold levels are summarized in Table 1. In order to validate the optimality of the strategy (τA∗(1) , τA∗(2) , τA∗(3)),
we compare in Figure 4 the value function with those of perturbed strategies (τ

Ã
(1)
k

, τ
Ã

(2)
k

, τ
Ã

(3)
k

), 1 ≤ k ≤ 6, where

Ãk := (A∗(1), A∗(2), A∗(3)) + δk

with δ1 := (1, 0, 0), δ2 := (1, 1, 0), δ3 := (1, 1, 1), δ4 := (0, 0,−1), δ5 := (0,−1,−1) and δ6 := (−1,−1,−1).
It is clear that (τ

Ã
(1)
k

, τ
Ã

(2)
k

, τ
Ã

(3)
k

) ∈ S̃3 ⊂ S3 because Ã(1)
k ≥ Ã

(2)
k ≥ Ã

(3)
k by construction. Figure 4 suggests

in all cases that the value obtained by (τA∗(1) , τA∗(2) , τA∗(3)) dominates uniformly over x those obtained by the
perturbed strategies. These results are indeed consistent with our main theoretical results as in (3.26). In view of
Figure 4, we also observe that there are up to three kinks (at A∗) in the value function although these still appear
to be differentiable. This is again due to smooth fit as in Remark 2.4. The perturbed strategies on the other hand
fail to be differentiable while they are still continuous.
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FIGURE 1. Plots of Λ and the value function uA∗ when g = g(exp).
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FIGURE 2. Plots of Λ and the value function uA∗ when g = g(lin).
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(a-i) g(exp) with f (sim) (b-i) g(lin) with f (sim)
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(a-ii) g(exp) with f (lin) (b-ii) g(lin) with f (lin)
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(a-iii) g(exp) with f (exp) (b-iii) g(lin) with f (exp)

FIGURE 3. Verification of optimality: the value function uA∗ (solid black) and the stopping
value g (solid blue) in comparison with uA(·) for A = A∗ − 2, A∗ − 1, A∗ + 1, A∗ + 2 (dotted).
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f1 f2 f3 γ1 γ2 γ3

Case 1 lin exp lin 0.2287 0.0642 0.7673
Case 2 lin exp exp 0.2834 0.8962 0.8266
Case 3 lin exp lin 0.8131 0.3833 0.6173
Case 4 exp exp exp 0.4139 0.3091 0.2638

a1 a2 a3

Case 1 (0.34, 0.21, 0.16, 0.43) (0.36, 0.20, 0.41, 0.25) (0.32, 0.41, 0.39, 0.32)
Case 2 (0.20, 0.42, 0.16, 0.44) (0.25, 0.30, 0.23, 0.36) (0.35, 0.29, 0.36, 0.01)
Case 3 (0.29, 0.12, 0.40, 0.27) (0.27, 0.23, 0.49, 0.04) (0.14, 0.11, 0.01, 0.40)
Case 4 (0.38, 0.40, 0.41, 0.25) (0.50, 0.10, 0.21, 0.40) (0.09, 0.50, 0.36, 0.18)

c1 c2 c3

Case 1 (4.75, 4.33, 4.99, 3.02) (2.22, 3.16, 1.12, 1.94) (0.30, 1.78, 3.26, 0.71)
Case 2 (3.37, 0.59, 1.23, 2.73) (2.19, 4.07, 1.71, 2.81) (2.19, 1.62, 1.88, 1.98)
Case 3 (4.95, 0.09, 2.67, 3.13) (0.34, 3.42, 4.43, 0.69) (4.70, 3.92, 4.50, 1.09)
Case 4 (0.37, 0.97, 0.20, 2.79) (2.95, 2.16, 4.73, 0.92) (4.55, 3.75, 3.82, 2.49)

A∗1 A∗2 A∗3 A∗{1,2} A∗{2,3} A∗{1,2,3} A∗(1) A∗(2) A∗(3)

Case 1 -3.37 -0.37 -1.07 -2.090 -0.75 -1.75 -1.75 -1.75 -1.75
Case 2 -0.75 -1.88 -0.72 -1.35 -1.39 -1.17 -0.75 -1.39 -1.39
Case 3 -2.57 -0.77 -5.64 -1.73 -2.74 -2.67 -1.73 -1.73 -5.64
Case 4 1.46 -1.42 -2.56 -0.25 -2.01 -1.13 1.46 -1.42 -2.56

TABLE 1. Parameters and threshold levels for (3.26).

We now move onto verifying (3.27) or the optimality over S̃3 for a wider class of f and g. We assume (b)
gm = g(lin) for some α = αm and β = 0 for each 1 ≤ m ≤ 3, (i) f1 = γ1f

(sim) with I1 = (−∞, 0),
I2 = [0,∞), f (1) = −10 and f (2) = 10, (ii) f2 = γ2f

(lin) for b1 = 1 and b2 = 0 with sufficiently small b3 and
(iii) f3 = γ3f

(exp) for L = B = 1. We simulate the values of {αm, γm, 1 ≤ m ≤ 3} until we obtain each of
Cases 1 to 4 as described above. The generated parameters and threshold levels are summarized in Table 2 and the
comparison with perturbed strategies are given in Figure 5. We again observe in all cases that the value obtained by
(τA∗(1) , τA∗(2) , τA∗(3)) indeed dominates uniformly over x those obtained by the perturbed strategies. This verifies
numerically (3.27) and we also observe the same smoothness properties as in Figure 4.

5. CONCLUDING REMARKS

In this paper, we studied a wide class of optimal stopping problems for a general spectrally negative Lévy process
and extended them to multiple-stopping. Our framework is applicable to a wide range of settings particularly in
real option problems where the firm withdraw from a project in stages. Our analytical results suggest that the
optimal solutions can be characterized by the threshold levels that make certain monotone functions vanish and the
corresponding value functions can be expressed in terms of the scale function. Our numerical experiments suggest,
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FIGURE 4. Verification of optimality (3.26) for the multiple-stage case: the value function U (3)

(solid) in comparison with the perturbed strategies.

for the hyperexponential jump case, that these can be solved instantaneously with high precision. These tools we
developed in this paper are highly valuable and can be used flexibly for analysis in real options and other fields of
finance and industrial applications.

There are several directions for future research. First, our results can be pursued for a general Lévy process with
both positive and negative jumps. While it makes the problem less tractable, it is expected that these can be done at
least for the cases with analytical forms of Wiener-Hopf factors such as double exponential jump diffusion [20] and
phase-type Lévy processes [2]. Second, by using hyperexponential fitting, one can approximate any Lévy process
with completely monotone jumps (such as CGMY and variance gamma processes) by those with hyperexponential
jumps as in Section 4. By calibrating with real financial and industrial data as in [3], one can conduct detailed
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α1 α2 α3 γ1 γ2 γ3

Case 1 0.0596 0.2687 0.9867 0.5824 0.4210 0.0921
Case 2 0.9119 0.0149 0.1567 0.7722 0.4754 0.6809
Case 3 0.1874 0.5317 0.3550 0.6003 0.0850 0.9224
Case 4 0.7862 0.7231 0.2788 0.6535 0.4897 0.9729

A∗1 A∗2 A∗3 A∗{1,2} A∗{2,3} A∗{1,2,3} A∗(1) A∗(2) A∗(3)

Case 1 -4.53 -4.71 -1.56 -4.61 -2.84 - 3.47 - 3.47 - 3.47 - 3.47
Case 2 -3.32 -6.69 -6.20 -3.93 -6.52 -4.15 -3.32 -6.52 -6.52
Case 3 -4.17 -2.12 -4.87 -3.47 -3.42 -3.79 -3.47 -3.47 -4.87
Case 4 -3.31 -3.58 -5.60 -3.41 -4.14 -3.70 -3.31 -3.58 -5.60

TABLE 2. Parameters and threshold levels for (3.27).

empirical analyses on optimal stopping strategies and the value functions. Finally, it is an interesting extension to
“swing option type” multiple-stopping with refracting time as in [10, 11] where there have to be some intervals
between any two stoppings.

APPENDIX A. PROOFS

A.1. Proof of Lemma 2.1. Substituting (2.20) in (2.11),

ρ
(r)
g,A = −

N∑
i=1

cie
aiA

∫ ∞
0

Π(du)

∫ u

0
e−Φrz(eai(z−u) − 1)dz.(A.1)

(Case 1) First suppose ai 6= Φr for all 1 ≤ i ≤ N . Simple algebra gives

Λ(A) = − r

Φr
K +

N∑
i=1

cie
aiA

M
(ai)
r

Φr
+ Ψf (A)(A.2)

where

M (a)
r := r +

aσ2

2
Φr +

∫ ∞
0

Π(du)
[
(1− e−Φru)− e−au(1− e−(Φr−a)u)

Φr

Φr − a

]
, a ∈ R\{Φr}.

By the definition of ψ and Φr, we rewrite M (a)
r as

r +
aσ2

2
Φr +

∫ ∞
0

Π(du)

[
(1− e−Φru − Φru1{u∈(0,1)})− e−au(1− e−(Φr−a)u)

Φr

Φr − a
+ Φru1{u∈(0,1)}

]
=
(
c−

∫ 1

0
u(e−au − 1)Π(du)

)
Φr +

σ2

2
Φr(Φr + a)

− Φr

Φr − a

∫ ∞
0

Π(du)e−au
(

1− e−(Φr−a)u + (Φr − a)u1{u∈(0,1)}

)
=

Φr

Φr − a
ψa(Φr − a),
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FIGURE 5. Verification of optimality (3.27) for the multiple-stage case: the value function Ũ (3)

(solid) in comparison with the perturbed strategies.

where the last equality holds by (2.5). On the other hand, ψa(Φr − a) = ψ(Φr)− ψ(a) = r− ψ(a); see page 213
of [21]. Hence

Φr$r(a) =
Φr

Φr − a
(r − ψ(a)) =

Φr

Φr − a
ψa(Φr − a),

which shows for the case ai 6= Φr for all 1 ≤ i ≤ N .
(Case 2) Suppose aj = Φr for some 1 ≤ j ≤ N (with ai 6= aj for i 6= j by assumption). Take a sequence

of (strictly) increasing sequence a(m)
j ↑ aj = Φr. Then a modification of (2.17) with aj replaced with a(m)

j is by
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Case 1

Λ(m)(A) = − r

Φr
K +

∑
1≤i≤N,i6=j

cie
aiA$r(ai) + cje

a
(m)
j A$r(a

(m)
j ) + Ψf (A).

By the definition of $r as in (2.21), we have

lim
m↑∞

Λ(m)(A) = − r

Φr
K +

N∑
i=1

cie
aiA$r(ai) + Ψf (A).

On the other hand, in view of (A.1), its integrand is monotone in a. Hence by the monotone convergence theorem
and because g and g′ are continuous in a, limm↑∞ Λ(m)(A) = Λ(A), and the proof is complete for Case 2.

A.2. Proof of Lemma 2.2. Because g(x) is infinitely differentiable, the results are clear for x ∈ (−∞, A∗).
Hence we show for x ∈ (A∗,∞). Because W (r)(y) is differentiable on y > 0 as in Remark 2.1 (1), KZ(r)(x −
A∗)−

∑N
i=1 cie

aixZ
(r−ψ(ai))
ai (x−A∗) is twice differentiable.

Regarding Θf (x;A∗), as in the proof of Lemma 4.5 of [16], integration by parts, thanks to the continuity of f ,
gives

r

∫ x

A∗
W (r)(x− y)f(y)dy

=
[
f(y)(Z(r)(x)− Z(r)(x− y))

]y=x

y=A∗
−
∫ x

A∗
f ′(y)(Z(r)(x)− Z(r)(x− y))dy

= f(x)(Z(r)(x)− 1)− f(A∗)(Z(r)(x)− Z(r)(x−A∗))− (f(x)− f(A∗))Z(r)(x) +

∫ x

A∗
f ′(y)Z(r)(x− y)dy

= −f(x) + f(A∗)Z(r)(x−A∗) +

∫ x

A∗
f ′(y)Z(r)(x− y)dy.

Hence

Θf (x;A∗) =
1

r

[
−f(x) + f(A∗)Z(r)(x−A∗) +

∫ x

A∗
f ′(y)Z(r)(x− y)dy

]
.

Because Z(r)(0) = 1, Θf (x;A∗) is differentiable with

Θ′f (x;A∗) = f(A∗)W (r)(x−A∗) +

∫ x

A∗
f ′(y)W (r)(x− y)dy.

When X is of unbounded variation, because W (r)(0) = 0 as in Remark 2.1 (2), Θf (x;A∗) is twice-differentiable
with

Θ′′f (x;A∗) = f(A∗)W (r)′(x−A∗) +

∫ x

A∗
f ′(y)W (r)′(x− y)dy.

A.3. Proof of Proposition 2.1. Suppose −∞ < A∗ < ∞. By directly using the results of [17] (Lemma 3.7 and
Proposition 3.4), we obtain

(L − r)uA∗(x) + f(x) = 0, x ∈ (A∗,∞),

uA∗(x) ≥ g(x), x ∈ R,
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where L is the infinitesimal generator of X applied to a sufficiently smooth function h, i.e.,

Lh(x) = ch′(x) +
1

2
σ2h′′(x) +

∫ ∞
0

[h(x− z)− h(x) + h′(x)z1{0<z<1}]Π(dz).

We shall show (L − r)uA∗(x) + f(x) < 0 on x ∈ (−∞, A∗) and verify the optimality. By the definition of ψ,

Leax = eax
[
ca+

1

2
σ2a2 +

∫ ∞
0

[
e−az − 1 + az1{0<z<1}

]
Π(dz)

]
= eaxψ(a)

for any a > 0 and hence we have

(L − r)g(x) + f(x) = −rK +

N∑
i=1

cie
aix(r − ψ(ai)) + f(x).(A.3)

By how A∗ is chosen,

0 = −rK +
N∑
i=1

cie
aiA
∗
Φr$r(ai) + ΦrΨf (A∗).(A.4)

Because f is increasing and x < A∗

ΦrΨf (A∗) ≥ Φr

∫ ∞
0

e−Φryf(x)dy = f(x).(A.5)

It is also easy to see that for any 1 ≤ i ≤ N

eaiA
∗
Φr$r(ai) ≥ eaix(r − ψ(ai)).(A.6)

Indeed, for the case r − ψ(ai) > 0, we must have Φr − ai > 0 and hence (A.6) holds by A∗ > x; for the
case r − ψ(ai) < 0, the left-hand side is positive while the right-hand side is negative in (A.6); for the case
r − ψ(ai) = 0, the left-hand side is positive because ψ′(Φr) is, while the right-hand side is zero. Hence, by
(A.4)-(A.6), (L − r)uA∗(x) + f(x) < 0 holds.

This result also holds for the case A∗ = ∞. In this case, 0 > −rK +
∑N

i=1 cie
aiÂΦr$r(ai) + ΦrΨf (Â), for

any Â ∈ R. Therefore (L− r)g(x) + f(x) < 0 holds by the same reasoning as in (1) by simply replacing A∗ with
Â.

Finally, we verify the optimality of uA∗(x). Thanks to Lemma 2.2 and the continuous/smooth fit condition as in
Remark 2.4, a version of Meyer-Ito’s formula as in Theorem IV.71 of [28] (see also Theorem 2.1 of [27]) implies
{e−rtuA∗(Xt)−

∫ t
0 e
−rs(L− r)uA∗(Xs)1{Xs 6=A∗}ds, t ≥ 0} is a local martingale. Namely, there exists some lo-

calizing sequence {σm,m ≥ 1} such that {e−r(t∧σm)uA∗(Xt∧σm)−
∫ t∧σm

0 e−rs(L−r)uA∗(Xs)1{Xs 6=A∗}ds, t ≥
0} is a martingale for any m ≥ 1. By the optional sampling theorem, for any stopping time τ ∈ S , we have for
any L > 0

Ex
[
e−r(τ∧σm∧L)uA∗(Xτ∧σm∧L)−

∫ τ∧σm∧L

0
e−rs(L − r)uA∗(Xs)1{Xs 6=A∗}ds

]
= uA∗(x).

Because (L − r)uA∗ + f ≤ 0,

Ex
[
e−r(τ∧σm∧L)uA∗(Xτ∧σm∧L) +

∫ τ∧σm∧L

0
e−rsf(Xs)ds

]
≤ uA∗(x).
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Moreover, because uA∗(x) ≥ g(x) and uA∗(x) ≥ limA↓−∞ uA(x) ≥
∫∞

0 e−rtf(−∞)dt =: B uniformly by
(2.19), we have

Ex
[
e−r(τ∧σm∧L)(g(Xτ∧σm∧L) ∨B) +

∫ τ∧σm∧L

0
e−rsf(Xs)ds

]
≤ uA∗(x).

Because g ∨B ∈ [B,K ∨B], by the dominated convergence theorem

lim
m↑∞

lim
L↑∞

Ex
[
e−r(τ∧σm∧L)(g(Xt∧σm∧L) ∨B)

]
= Ex

[
e−rτ (g(Xτ ) ∨B)

]
≥ Ex

[
e−rτg(Xτ )

]
.

On the other hand, because f(−∞) > −∞ and by the monotone convergence theorem,

lim
m↑∞

lim
L↑∞

Ex
[ ∫ τ∧σm∧L

0
e−rsf(Xs)ds

]
= lim

m↑∞
lim
L↑∞

Ex
[ ∫ τ∧σm∧L

0
e−rsf+(Xs)ds

]
− lim
m↑∞

lim
L↑∞

Ex
[ ∫ τ∧σm∧L

0
e−rsf−(Xs)ds

]
= Ex

[ ∫ τ

0
e−rsf(Xs)ds

]
.

This means Ex
[
e−rτg(Xτ ) +

∫ τ
0 e
−rsf(Xs)ds

]
≤ uA∗(x), for any arbitrary τ ∈ S, as desired.

It is now left to show for the case A∗ = −∞. Because ∂uA(x)/∂A < 0 for any A ∈ R as in (2.19), there exists

u−∞(x) := lim
A↓−∞

uA(x) = lim
A↓−∞

Ex
[∫ τA

0
e−rtf(Xt)dt

]
.

By Assumption 2.2 (1) and by the monotone convergence theorem, we can write

u−∞(x) = lim
A↓−∞

(
Ex
[∫ τA

0
e−rtf+(Xt)dt

]
− Ex

[∫ τA

0
e−rtf−(Xt)dt

])
= Ex

[∫ ∞
0

e−rtf+(Xt)dt

]
− Ex

[∫ ∞
0

e−rtf−(Xt)dt

]
= Ex

[∫ ∞
0

e−rtf(Xt)dt

]
.

Now by Corollary 8.9 of [21], u−∞ attains the proposed form. Because ∂uA(x)/∂A < 0 for any A ∈ R, clearly
u−∞(x) > g(x) for any x ∈ R. Moreover, because u−∞ is attains by τ∗ =∞, we have the claim.

A.4. Proof of Proposition 2.2. (1,2) We first suppose x < A∗. Then by definition uA∗(x) = g(x). Because
uA(x) = g(x) for any A ≥ x, it is sufficient to show uA(x) ≤ g(x) for A < x. This is indeed so because by
(2.16), (2.19) and Λ(x) < 0 due to x < A∗,

uA(x) ≤ ux(x+) = g(x) +W (r)(0)Λ(x) ≤ g(x) = uA∗(x), A < x < A∗.

This proves (2). For (1), suppose x ≥ A∗. Then by (2.19) uA∗(x) ≥ uA(x) for any A ≤ x. For A ≥ x,
uA(x) = g(x) and by (2.16), (2.19) and Λ(x) > 0 due to x > A∗,

uA∗(x) ≥ ux(x+) = g(x) +W (r)(0)Λ(x) ≥ g(x) = uA(x), A ≥ x > A∗.

Therefore uA∗(x) ≥ uA(x) uniformly in x ∈ R, as desired.
The corresponding value function (for (1)) can be expressed as the sum of (2.14):

ũ(x) = g(A∗)Z(r)(x−A∗) +W (r)(x−A∗)
(
− r

Φr
g(A∗) + ρ

(r)
g,A∗ + Ψf (A∗)

)
− ϕ(r)

g,A∗(x)−Θf (x;A∗).
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From the definition of A∗ that makes (2.17) vanish,

ũ(x) = g(A∗)Z(r)(x−A∗) +W (r)(x−A∗)σ
2

2
g′(A∗)− ϕ(r)

g,A∗(x)−Θf (x;A∗),

as desired.
(3) the proof is the same as that of Proposition 2.1 (3).
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