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Abstract

This study considers testing the hypothesis that the coefficient of power-transformed conditioning

variable is zero or not. The hypothesis is not standard because there is an unidentified parameter under

the null hypothesis, and also because the null can be tested by imposing zero power coefficient. That is,

the so-called twofold identification problem arises. We examine the asymptotic null distribution of the

quasi-likelihood ratio (QLR) test and show that it can be obtained by employing a conventional quadratic

expansion, which is a different consequence from Cho, Ishida, and White (Neural Computation, 2010),

in which a fourth-order Taylor expansion is the minimum order of model expansion. This difference

is caused from that power-transformed conditioning variable is different from the other conditioning

variables.
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1 Introduction

We consider the following simple model using power transformation:

Yt = α+ W′tδ + βXγ
t + Ut, (1)

where (Yt, Xt,W′t)′ ∈ R2+k (k ∈ {0} ∪ N) are identically and independently distributed (IID); Xt is

positively valued; and Z′Z =
∑n

t=1 ZtZ′t is nonsingular, where Zt := (1,W′t)′, and n is the sample size.

We also suppose that Zt does not contain a constant and Xt.

Econometric models using power transformations are popular and also often easily applied due to their

flexibility. For example, Turkey [6] considers its properties and advocates use of power transformation

when linear model is misspecified. As another example, Box and Cox [1] reparameterize Eq. (1) by letting

α = −λ/γ and β = λ/γ for some unknown λ to secure the continuity of power transformation (see Turkey

[6]) and estimate λ and γ separately. This yields the so-called Box-Cox transformation. That is, Eq. (1) is

now transformed into

Yt = W′tδ + λ

(
Xγ
t − 1

γ

)
+ Ut. (2)

Thus, estimating and inferring Eq. (2) is equivalent to Eq. (1) by the invariance principle. Many other

interesting power transformations are obtained by adjusting the coefficients in Eq. (1).

Our interest is in testing the effect of Xt to E[Yt|Zt], and the hypotheses can be given as

H0 : ∃(α∗, δ∗), E[Yt|Zt] = α∗ + W′tδ∗ w.p. 1 ; vs. H1 : ∀(α, δ), E[Yt|Zt] = α+ W′tδ w.p. < 1. (3)

Here, subscript ‘∗’ is used to parameterize E[Yt|Zt], and (β∗, γ∗) ∈ {(β, γ) : βXγ
t = constant} underH0.

These hypotheses are motivated by its abundant applicabilities. First, a researcher may suffer from the

loss of power of t-statistic by incorrectly specifying a linear model for E[Yt|Zt]. We instead consider the

power transformation as an alternative. Second, the researcher may think of Xt as an omitted variable with

unknown functional form. As a simple example, Wt and Xt can be thought of as a set of dummy variables

and a continuous random variable, respectively. When the functional form of E[Yt|Zt] is not necessarily

linear with respect to Xt, a natural extension is supposing a flexible function for Xt. Here, the power

function serves for this purpose.

Our test statistic is the quasi-likelihood ratio (QLR) test considered by Cho, Ishida, and White [2]:

QLRn := n(1− σ̂2n,A/σ̂2n,0),
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where

σ̂2n,A := inf
α,β,γ,δ

1

n

n∑
t=1

(Yt − α−W′tδ − βX
γ
t )

2, and σ̂2n,0 := inf
α,δ

1

n

n∑
t=1

(Yt − α−W′tδ)
2.

As Cho, Ishida, and White [2] point out, testing the hypotheses in (3) is not standard because it does have

identification problem two different ways under H0. If β∗ = 0, then γ∗ is not identified, so that Davies’

[3, 4] identification problem arises. On the other hand, if γ∗ = 0, then α∗ + β∗ is identified, but each of α∗

and β∗ is not identified. Cho, Ishida, and White [2] call this twofold identification and show that the QLR

test may be successfully used for the twofold identification. In particular, a quartic expansion was necessary

for obtaining the asymptotic null distribution in their context.

The goal of this study is twofold. The first goal is in examining the QLR test and resolving the twofold

identification problem under our new context. The QLR test is not always successful in resolving the twofold

identification as pointed out by Cho, Ishida, and White [2], and our model is different from theirs in that

Wt does not contain Xt. This aspect lets us examine this model separately. The second goal stems from

our desire to search for a model pursued by the literature. More specifically, Hansen [5] provides regularity

conditions for handling Davies’s [3, 4] identification problem, and Box-Cox transformation is treated as a

special case of his analysis. Nevertheless, Hansen [5] does not assume the presence of twofold identification,

and this lets his analysis be restrictive in analyzing general power transformations: the space for γ has to

be restricted not to contain zero and avoid a quartic expansion. We show that the model of this study can

be indeed analyzed using a conventional quadratic expansion, although it has a twofold identification. This

mainly follows from that the flexible function we examine is a power function.

The plan of this note is similar to that of Cho, Ishida, and White [2]. In Section 2, we consider the QLR

statistic under β∗ = 0 and introduce another statistic which is asymptotically equivalent to the QLR statistic

under β∗ = 0. In Section 3, we consider γ∗ = 0 and proceed as in Section 2. In Section 4, we show how

the QLR statistics in Section 2 and 3 are stochastically associated. Finally, concluding remarks are given in

Section 5.

2 QLR Statistic under β∗ = 0

For notational simplicity, we let the quasi-likelihood (QL) and concentrated QL (CQL) be

Ln(α, β, γ, δ) := −
n∑
t=1

(Yt − α− βXγ
t −W′tδ)

2,
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Ln(β; γ) := Ln(α̂n(β; γ), β, γ, δ̂n(β; γ))

respectively, where (α̂n(β; γ), δ̂n(β; γ)
′)′ := argmaxα,δ Ln(α, β, γ, δ). We note that γ∗ is not identified if

β∗ = 0, so that we fix γ for the moment and minimize the QL with respect to identified parameters (α∗, δ∗).

The CQL is denoted as Ln(β; γ), and its specific form is

Ln(β; γ) = −U′MU + 2βX(γ)′MU− β2X(γ)′MX(γ)

using β∗ = 0, where U := (U1, U2, . . . , Un)
′, M := I− Z(Z′Z)−1Z′, and X(γ) := (Xγ

1 , X
γ
2 , . . . , X

γ
n)′.

The CQL is conventionally approximated by a second-order Taylor expansion around β∗ = 0 (e.g.

Hansen [5]). That is,

Ln(β; γ) = Ln(0; γ) + L(1)
n (0; γ)β +

1

2
L(2)
n (0; γ)β2,

where L(k)
n (0; γ) := ∂k

∂βkLn(β; γ)|β=0 for k = 0, 1, 2, . . .. Thus, if we maximize the CQL with respect to β

for each γ,

sup
β
{Ln(β; γ)− Ln(0; γ)} = sup

β

{
L(1)
n (0; γ)β +

1

2
L(2)
n (0; γ)β2

}
= −{L

(1)
n (0; γ)}2

2L
(2)
n (0; γ)

=
{X(γ)′MU}2

X(γ)′MX(γ)
.

(4)

We consider this maximization process to examine the following QLR statistic:

QLR(1)
n := sup

γ
sup
β
n

{
1− Ln(β; γ)

Ln(0; γ)

}
=

{n−1/2X(γ)′MU}2

σ̂2n,0{n−1X(γ)′MX(γ)}

using the fact that σ̂2n,0 = −n−1Ln(0; γ). The statistic QLR(1)
n is defined to accommodate the fact that γ is

not identified under β∗ = 0. We let n tend to infinity before maximizing the CQL with respect to γ.

It is not hard to provide regularity conditions for obtaining the weak convergence of QLR(1)
n underH0.

Under suitable regularity conditions as considered by Hansen [5], n−1/2X( · )′MU is tight, and the uniform

law of large numbers holds for n−1X( · )′MX( · ). Further, σ̂2n,0 converges to a constant in probability.

This implies that QLR(1)
n weakly converges to supγ G(γ)2 under the null β∗ = 0, where G is a Gaussian

stochastic process with

E[G(γ)G(γ′)] = ρ(γ, γ′)√
κ(γ, γ)

√
κ(γ′, γ′)

,
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where

ρ(γ, γ′) :=E[U2
t X

γ+γ′

t ]− E[Xγ
t Zt]E[ZtZ′t]

−1E[U2
t ZtXγ′

t ]

− E[Xγ′

t Zt]E[ZtZ′t]
−1E[U2

t ZtXγ
t ] + E[Xγ

t Z′t]E[ZtZ′t]
−1E[U2

t ZtZ′t]E[ZtZ′t]
−1E[ZtXγ′

t ],

and κ(γ, γ) := σ2∗{E[X2γ
t ]− E[Xγ

t Z′t]E[ZtZ′t]−1E[ZtXγ
t ]}.

3 QLR Statistic under γ∗ = 0

We now iterate this procedure to obtain the asymptotic null distribution under γ∗ = 0. If γ∗ = 0, α∗ + β∗ is

identified, although each parameter is not separately identified. For resolving this, we proceed in two ways:

first, we fix β to identify α∗ and obtain the asymptotic null distribution. Alternatively, we fix α and identify

β∗.

3.1 When β∗ Is Not Identified

We first fix β and obtain the CQL with respect to identified parameters (α∗, δ∗) as before. We let

Ln(γ;β) := Ln(α̂n(γ;β), β, γ, δ̂n(γ;β)),

where (α̂n(γ;β), δ̂n(γ;β)
′)′ := argmaxα,δ Ln(α, β, γ, δ). By this, the CQL is explicitly stated as

Ln(γ;β) = −U′MU + 2βX(γ)′MU− β2X(γ)′MX(γ).

A second-order Taylor expansion is now applied. That is, if Ln(γ;β) is approximated at around γ∗ = 0,

Ln(γ;β) = Ln(0;β) + L(1)
n (0;β)γ +

1

2
L(2)
n (0;β)γ2 + op(1),

so that

sup
γ
{Ln(γ;β)− Ln(0;β)} = sup

γ

{
L(1)
n (0;β)γ +

1

2
L(2)
n (0;β)γ2 + op(1)

}
= −{L

(1)
n (0;β)}2

2L
(2)
n (0;β)

+ op(1) =
{βL′1MU}2

β2L′1ML1 − βL2MU
+ op(1), (5)

where L(k)
n (0;β) := ∂k

∂γk
Ln(γ;β)|γ=0 for k = 0, 1, 2, . . ., L1 := (lnX1, lnX2, . . . , lnXn)

′, and L2 :=
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[(lnX1)
2, (lnX2)

2, . . . , (lnXn)
2]′. Here, we could apply a second-order Taylor expansion from the fact

that L(1)
n (0;β) is not necessarily equal zero, whereas Cho, Ishida, and White [2] have to rely on a fourth-

order Taylor expansion as it is zero under their context. This makes testing neglected nonlinearity by a

power function be different from what Cho, Ishida, and White [2] examine, given that Xt is not contained

in Wt. We also note that the right-hand side (RHS) of (5) is free of β, provided that L2MU = op(n), which

easily holds under mild regularities, as E[(lnXt)
2Ut] = 0 and E[ZtUt] = 0. We thus obtain that

sup
γ
{Ln(γ;β)− Ln(0;β)} =

{L′1MU}2

L′1ML1
+ op(1),

and the asymptotic distribution of the following QLR statistic:

QLR(2)
n := sup

β
sup
γ
n

{
1− Ln(γ;β)

Ln(0;β)

}

is simply identical to that of
{n−1/2L′1MU}2

σ̂2n,0{n−1L′1ML1}
. (6)

Here, we used the fact that Ln(0;β) = −nσ̂2n,0. We can apply the central limit theorem and law of large

numbers to the numerator and denominator, respectively, so that QLR(2)
n weakly converges to a noncentral

chi-square random variable. That is, a Gaussian process does not have to be introduced for this limit,

although β∗ is not identified.

3.2 When α∗ Is Not Identified

When γ∗ = 0, we can identify the model in another way. That is, we can fix α and identify (β∗, δ∗). For

examining this, we first let (β̂n(γ;α), δ̂n(γ;α)′)′ := argmaxβ,δ Ln(α, β, γ, δ), which is

 β̂n(γ;α)

δ̂n(γ;α)

 =

 ∑
X2γ
t

∑
Xγ
t W′t∑

WtX
γ
t

∑
WtW′t

−1  ∑(Yt − α)Xγ
t∑

(Yt − α)Wt

 ,
and we now obtain the QL as

Ln(γ;α) := Ln(α, β̂n(γ;α), γ, δ̂n(γ;α))

=
∑

(Yt − α)2 −

 ∑(Yt − α)Xγ
t∑

(Yt − α)Wt

′  ∑
X2γ
t

∑
Xγ
t W′t∑

WtX
γ
t

∑
WtW′t

−1  ∑(Yt − α)Xγ
t∑

(Yt − α)Wt

 .
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We can also approximate this with respect to γ∗ = 0. For this, we obtain the first two derivatives:

L(1)
n (0;α) = 2(α∗ − α)L′1MU︸ ︷︷ ︸

Op(
√
n)

+2U′K1(Z′Z)−1Z′U︸ ︷︷ ︸
Op(1)

−U′Z(Z′Z)−1(Z′K1 + K′1Z)(Z′Z)−1Z′U︸ ︷︷ ︸
Op(1)

under mild regularities, where L(j)
n (0;α) := ∂j

∂γj
Ln(γ;α)|γ=0 and Kj := [Lj

... 0n×k] for j = 1, 2, . . ., so

that L(1)
n (0;α) = 2(α∗ − α)L′1MU + op(

√
n). Here, L(1)

n (0;α) is not necessarily equal to zero. Thus, a

second-order Taylor expansion is enough. Also,

L(2)
n (0;α) =− 2(α∗ − α)2L′1ML1

+ 2(α∗ − α)[L′1MU + 2L′1K1(Z′Z)−1Z′U− 2L′1Z(Z′Z)−1K′1U]

+ 2U′Z(Z′Z)−1[Z′K1 + K′1Z−K′1K1 − Z′K2](Z′Z)−1Z′U

+ 2[U′K1(Z′Z)−1K′1U + U′K2(Z′Z)−1Z′U− 2U′K1(Z′Z)−1{Z′K1 + K′1Z}(Z′Z)−1Z′U]

after some algebra. It is not hard to find sufficient conditions for having

• L′1ML1 = Op(n);

• L′1MU + 2L′1K1(Z′Z)−1Z′U− 2L′1Z(Z′Z)−1K′1U = Op(
√
n);

• U′Z(Z′Z)−1{Z′K1 + K′1Z−K′1K1 − Z′K2}(Z′Z)−1Z′U = Op(1); and

• U′K1(Z′Z)−1K′1U + U′K2(Z′Z)−1Z′U− 2U′K1(Z′Z)−1{Z′K1 + K′1Z}(Z′Z)−1Z′U = Op(1),

either. Thus, we may conclude that L(2)
n (0;α) = −2(α∗ − α)2L′1ML1 + op(n) under mild conditions.

Finally, it now follows that

sup
γ
{Ln(γ;α)− Ln(0;α)} = −

{L(1)
n (0;α)}2

2L
(2)
n (0;α)

+ op(1) =
{L′1MU}2

L′1ML1
+ op(1).

The unidentified parameter α is canceled off as in the previous subsection, and the weak limit of the QLR

test defined as

QLR(3)
n := sup

α
sup
γ
n

{
1− Ln(γ;α)

Ln(0;α)

}
=
{n−1/2L′1MU}2

σ̂2n,0{n−1L′1ML1}
+ op(1)

is asymptotically equivalent to (6) under γ∗ = 0. Here, we also used that Ln(0;α) = −nσ̂2n,0. From this,

QLR
(2)
n is asymptotically equivalent to QLR(3)

n .
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4 The Relationship between the Three QLR Statistics

The separate weak limits we obtained in the previous sections are not independent. We can derive their

stochastic interrelationship by letting γ converge to zero from the QLR test in Section 2. For examining this,

we let Nn(γ) and Dn(γ) be defined as

Nn(γ) := {X(γ)′MU)}2 and Dn(γ) := X(γ)′MX(γ),

respectively. Note that theses are the numerator and denominator of the RHS in (4). Also,

plim
γ→0

Nn(γ) = 0 and plim
γ→0

Dn(γ) = 0

because plimγ→0X(γ) = ι and M is an idempotent matrix constructed by Zt. We cannot simply apply

L’Hôspital’s rule using this. We therefore obtain

plim
γ→0

d

dγ
Nn(γ) = plim

γ→0
2{X(γ)′MU}

{
d

dγ
X(γ)′MU

}
= 0;

plim
γ→0

d

dγ
Dn(γ) = plim

γ→0
2

{
d

dγ
X(γ)′MX(γ)

}
= 0,

and this shows that it is necessary to apply L’Hôspital’s rule one more time. That is, from that

plim
γ→0

d2

dγ2
Nn(γ) = plim

γ→0
2

{
d2

dγ2
X(γ)′MU

}2

+ 2{X(γ)′MU}
{
d2

dγ2
X(γ)′MU

}
= 2{L1MU}2;

plim
γ→0

d2

dγ2
Dn(γ) = plim

γ→0
2

{
d2

dγ2
X(γ)′MX(γ) +

d

dγ
X(γ)′M

d

dγ
X(γ)

}
= 2L1ML1,

it now follows that

plim
γ→0

Nn(γ)

σ̂2n,0Dn(γ)
= plim

γ→0

N
(1)
n (γ)

σ̂2n,0D
(1)
n (γ)

= plim
γ→0

N
(2)
n (γ)

σ̂2n,0D
(2)
n (γ)

=
{L1MU}2

σ̂2n,0L1ML1
,

where N (k)
n (γ) := ∂k

∂γk
Nn(γ) and D(k)

n (γ) := ∂k

∂γk
Dn(γ), and k = 1, 2. Here, we exploited the simple

fact that plimγ→0
d
dγX(γ) = L1 and plimγ→0

d2

dγ2
X(γ) = L2. We note that these probability limits are now

asymptotically equivalent to QLR(2)
n or QLR(3)

n , respectively. Also, neither QLR(2)
n nor QLR(3)

n can be
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greater than QLR(1)
n . Thus,

QLRn = max[QLR(1)
n , QLR(2)

n , QLR(3)
n ] = QLR(1)

n ⇒ sup
γ
G(γ)2, (7)

which yields the asymptotic null distribution of the QLR test, and we achieve our first goal by this.

The implication of (7) is that we could obtain the previous result without a quartic approximation.

The asymptotic null distribution in Cho, Ishida, and White [2] had to exploit L’Hôspital’s rule four times

successively, whereas we here use L’Hôspital’s rule only twice. Further, Section 3 doesn’t have to use quartic

expansions to obtain the asymptotic distributions, which is also different from Cho, Ishida, and White [2].

This follows mainly from the fact that Xt is powered and is not contained in Wt. In case Xt were one of the

variables in Wt, the analysis using the quartic approximation in Cho, Ishida, and White [2] should have been

applied. From this, we can conclude that that our model can be analyzed in the framework of a quadratic

approximation, achieving our second goal.

5 Conclusion

We examine testing for the effect of omitted power transformation using the QLR test in the framework

of Cho, Ishida, and White [2]. The specification in Cho, Ishida, and White [2] had to exploit a quartic

expansion, whereas we didn’t have to exploit this for our model: a quadratic expansion is sufficient for our

case, although it has a twofold identification. The main source of this is that the conditioning variables we

employ for linearity are different from the conditioning variable for power transformation. Otherwise, a

quartic approximation should have been exploited.
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