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Abstract. We study the joint problem of sequential change detection and multiple hypothesis testing.

Suppose that the common distribution of a sequence of i.i.d. random variables changes suddenly at some

unobservable time to one of finitely many distinct alternatives, and one needs to both detect and identify the

change at the earliest possible time. We propose computationally efficient sequential decision rules that are

asymptotically either Bayes-optimal or optimal in a Bayesian fixed-error formulation, as the unit detection

delay cost or the misdiagnosis and false alarm probabilities go to zero, respectively. Numerical examples are

provided to verify the asymptotic optimality and the speed of convergence.

Keywords: Sequential change detection, sequential hypothesis testing, asymptotic optimality, optimal stopping,
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1. Introduction

Sequential change detection and identification refers to the joint problem of sequential change point

detection (CPD) and sequential multiple hypothesis testing (SMHT), where one needs to detect, based on

a sequence of observations, a sudden and unobservable change as early as possible and identify its cause

as accurately as possible. In a Bayesian setup, this problem boils down to optimally solving the trade-off

between the expected detection delay and the false alarm and misdiagnosis costs.

The sequential analysis methods such as Wald’s (1947) sequential probability ratio test (SPRT) and Page’s

(1954) cumulative sum (CUSUM) were originally developed for use in quality control problems, in which a

production process may suddenly get out of control at some unknown and unobservable time and one needs

to detect the failure time as soon as possible. However, it is more realistic to assume that a production

process consists of multiple processing units, each of which is prone to failures, and one needs to detect the

earliest failure time and accurately identify the failed component.

In economics and biosurveillance, elevated concerns about financial crises and bioterrorism have increased

the importance of early warning systems (see Bussiere and Fratzscher [2006] and Heffernan et al. [2004]);

structural changes need to be detected in time series such as the S&P 500 index for better financial risk

management and over-the-counter medication sales for early signs of a possible disease outbreak. There are

a number of potential causes of structural changes, and one needs to identify the cause of the change in

order to take the most appropriate countermeasures. Although most existing structural change detection

methods employ retrospective tests on historical data, online tests are more appropriate in these settings

because time-inhomogeneous data arrive sequentially, and the changes must be identified as soon as possible

after they occur.
1
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We focus on two online Bayesian formulations and propose two computationally efficient and asymptoti-

cally optimal strategies inspired by the separate asymptotic analyses of SMHT (Baum and Veeravalli [1994],

Dragalin et al. [1999, 2000]) and CPD (Tartakovsky and Veeravalli [2004]).

We suppose that a system starts in regime 0 and suddenly switches at some unknown and unobservable

disorder time θ to one of finitely many regimes µ ∈ M := {1, . . . ,M}. One observes a sequence of random

variables X = (Xn)n≥1 which are, conditionally on θ and µ, independent and distributed according to some

cumulative distribution function F0 before time θ and Fµ at and after time θ; namely,

X1, . . . , Xθ−1︸ ︷︷ ︸
F0−distributed

, Xθ, Xθ+1 . . .︸ ︷︷ ︸
Fµ−distributed

The objective is to detect the change as quickly as possible, and at the same time to identify the new

regime µ as accurately as possible. More precisely, we want to find a strategy (τ, d), consisting of a pair of

detection time τ and diagnosis rule d, in order to minimize the expected detection delay time and the false

alarm and misdiagnosis probabilities. This paper studies the following formulations;

(i) In the Bayes risk formulation, one minimizes a Bayes risk which is the sum of the expected detection

delay time and the false alarm and misdiagnosis probabilities.

(ii) In the fixed-error formulation, one minimizes the expected detection delay time subject to some low

upper bounds on the false alarm and misdiagnosis probabilities.

Finding the optimal solutions under both formulations requires intensive computations. For example, the

Bayes risk formulation reduces to an optimal stopping problem as shown by Dayanik et al. [2008], and the

optimal strategy is to stop as soon as the posterior probability process Π = (Π
(0)
n , . . . ,Π

(M)
n )n≥0, where

Π(i)
n := P {The system is in regime i at time n | X1, . . . , Xn} for every i ∈M0 and n ≥ 0,

with M0 :=M∪ {0}, enters some suitable region of the M -dimensional probability simplex.

Π(ω)

Regime 0 (1,0,0)

Regime 1 (0,1,0)

Regime 2 (0,0,1)

Π(ω)

Regime 0 (1,0,0)

Regime 1 (0,1,0)

Regime 2 (0,0,1)

(a) (b)

Figure 1. (a) The union of the shaded regions is the optimal stopping regions. (b) The dotted
triangles are the stopping regions of one of the strategies we propose in this paper.

Figure 1 (a) illustrates the optimal stopping regions for a typical problem with M = 2. The process Π

starts in the lower-left corner, which corresponds to the “no change” state or regime 0. As observations are

made, it progresses through the light-colored region, where raising a change-alarm is suboptimal. If it enters
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the shaded region in the top corner, then declaring a regime switch from 0 to 1 is optimal. If it enters the

shaded region in the lower-right corner, then declaring a regime switch from 0 to 2 is optimal. The first

hitting time to one of those shaded regions and the corresponding estimate of the new regime minimize the

costs for the Bayes risk formulation.

These shaded regions can in principle be found by dynamic programming methods; see, for example,

Derman [1970], Puterman [1994], Bertsekas [2005]. However, those methods are generally computationally

intensive due to the curse of dimensionality. The state space increases exponentially in the number of

regimes, and finding an optimal strategy by using the classical dynamic programming methods tends to be

practically impossible in higher dimensions.

Our goal is to obtain a practical solution that is both near-optimal and computationally feasible. We

propose two simple and asymptotically optimal strategies by approximating the optimal stopping regions

with simpler shapes. In particular, our strategy for the Bayes risk formulation raises a change alarm and

estimates the new regime when the posterior probability of at least one of the change types exceeds some

predetermined threshold for the first time. In Figure 1 (b), the stopping regions of this strategy correspond

to the union of the triangles in the two corners. Those triangular regions determine a stopping and selection

strategy, and hence the problem is simplified to designing the triangular regions to minimize the risks.

We give an asymptotic analysis of the change detection and identification problem. The SMHT and CPD

are the special cases, and the asymptotic optimality of our strategies can be proved using nonlinear renewal

theory after casting the log-likelihood-ratio (LLR) processes

Λn(i, j) := log
Π

(i)
n

Π
(j)
n

, n ≥ 1, i ∈M, j ∈M0 \ {i},(1)

as the sum of suitable random walks and some slowly-changing stochastic processes. We show that the r-quick

convergence of Lai [1977] for an appropriate subset of the LLR processes in (1) is a sufficient condition for

asymptotic optimality. We also pursue higher-order asymptotic approximations for the Bayes risk formulation

as inspired by Baum and Veeravalli’s (1994) work for SMHT.

The remainder of the paper is organized as follows. We formulate the Bayesian sequential change detection

and identification problem in Section 2. We propose two sequential change detection and identification

strategies in Section 3. Section 4 discusses sufficient conditions for asymptotic optimality of the proposed

strategies in terms of the LLR processes. In Section 5 we study certain convergence properties of the

LLR processes. We prove the asymptotic optimality of the proposed rules in Section 6. In Section 7 we

obtain higher-order asymptotic approximations for the Bayes risk formulation using nonlinear renewal theory.

Section 8 concludes with numerical examples. We also give an example of sufficient conditions in Appendix

A. Long proofs are deferred to Appendix B.

2. Problem formulations

Consider a probability space (Ω,F ,P) hosting a stochastic process X = (Xn)n≥1 taking values in some

measurable space (E, E). Let θ : Ω 7→ {0, 1, . . . } and µ : Ω 7→ M := {1, . . . ,M} be independent random
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variables defined on the same probability space with the probability distributions

P {θ = t} =

 p0, if t = 0

(1− p0)(1− p)t−1p, if t ≥ 1

 and νi = P {µ = i} > 0, i ∈M

for some known constants p0 ∈ [0, 1), p ∈ (0, 1), and positive constants ν = (νi)i∈M. The random variable θ

has an exponential tail with

% := − lim
t↑∞

logP {θ ≥ t+ 1}
t

= | log(1− p)|.(2)

Given µ = i and θ = t, the random variables X1, X2, . . . are conditionally independent, and (Xn)1≤n≤t−1

and (Xn)n≥t have common conditional probability density functions f0 and fi, respectively, with respect to

some σ-finite measure m on (E, E); namely,

P {θ = t, µ = i,X1 ∈ E1, · · · , Xn ∈ En}

= (1− p0)(1− p)t−1pνi

(t−1)∧n∏
k=1

∫
Ek

f0(x)m(dx)

[ n∏
l=t∧n

∫
El

fi(x)m(dx)

]
,

for every i ∈ M, t ≥ 1, n ≥ 1, and (E1 × · · · × En) ∈ En. The following assumptions remove certain trivial

cases; see Remark 5.11 below.

Assumption 2.1. For every i ∈M0 and j ∈M0 \ {i},

(i) 0 < fi(X1)/fj(X1) <∞ a.s.,

(ii) Fi and Fj are distinguishable;
∫
{x∈E:fi(x) 6=fj(x)} fi(x)m(dx) > 0.

Let F = (Fn)n≥0 denote the filtration generated by X; namely,

F0 = {∅,Ω} and Fn = σ(X1, . . . , Xn), n ≥ 1.

A sequential change detection and identification rule (τ, d) is a pair consisting of an F-stopping time τ (in

short, τ ∈ F) and a random variable d : Ω 7→ M that is measurable with respect to the observation history

Fτ up to the stopping time τ ; namely, d ∈ Fτ . Let

∆ := {(τ, d) : τ ∈ F, and d ∈ Fτ is an M-valued random variable}

be the collection of all sequential change detection and identification rules. The objective is to find a strategy

(τ, d) that solves optimally the trade-off between the mth moment

D(m)(τ) := E
[
(τ − θ)m+

]
,(3)

of the detection delay time (τ − θ)+ for some m ≥ 1 and the false alarm and misdiagnosis probabilities

R0i(τ, d) := P {d = i, τ < θ} , i ∈M,(4)

Rji(τ, d) := P {d = i, µ = j, θ ≤ τ <∞} , i ∈M, j ∈M0 \ {i}.(5)

Here and for the rest of the paper, x+ = max(x, 0) and x− = max(−x, 0) for any x ∈ R.
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We formulate the optimal trade-offs between (3)-(5) as in the following two related problems:

Problem 1 (Minimum Bayes risk formulation). For fixed m ≥ 1, c > 0, and strictly positive constants

a = (aji)i∈M,j∈M0\{i}, calculate the minimum Bayes risk inf(τ,d)∈∆R(c,a,m)(τ, d), where

R(c,a,m)(τ, d) := cD(m)(τ) +
∑
i∈M

∑
j∈M0\{i}

ajiRji(τ, d)(6)

is the expected sum of all risks arising from the detection delay time, false alarm and misdiagnosis, and find

a strategy (τ∗, d∗) ∈ ∆ which attains the minimum Bayes risk, if such a strategy exists.

Problem 2 (Bayesian fixed-error formulation). For fixed positive constants m ≥ 1 and R = (Rji)i∈M,j∈M0\{i},

calculate the smallest mth moment inf(τ,d)∈∆(R)D
(m)(τ) of detection delay time among all decision rules in

∆(R) :=
{

(τ, d) ∈ ∆ : Rji(τ, d) ≤ Rji, i ∈M, j ∈M0 \ {i}
}

with the same predetermined upper bounds on false alarm and misdiagnosis probabilities, and find a strategy

(τ∗, d∗) ∈ ∆(R) which attains the minimum, if such a strategy exists.

2.1. The posterior probability and log-likelihood-ratio (LLR) processes. As we introduced in Sec-

tion 1, let Π = (Π
(0)
n , . . . ,Π

(M)
n )n≥0 be the posterior probability process defined by

Π(0)
n := P {θ > n| Fn} and Π(i)

n := P {θ ≤ n, µ = i| Fn} , i ∈M, n ≥ 0.

Dayanik et al. [2008] proved that Π is a Markov process satisfying

Π(i)
n =

α
(i)
n (X1, . . . , Xn)∑

j∈M0
α

(j)
n (X1, . . . , Xn)

, i ∈M0

where α
(i)
n (x1, ..., xn) equals

(1− p0)(1− p)n
n∏
l=1

f0(xl), i = 0

p0νi

n∏
k=1

fi(xk) + (1− p0)pνi

n∑
k=1

(1− p)k−1
k−1∏
l=1

f0(xl)

n∏
m=k

fi(xm), i ∈M


for every n ≥ 1 and (x1, . . . , xn) ∈ En, and

α(i)
n (x1, . . . , xn)m(dx1) · · ·m(dxn) =

P{θ > n,X1 ∈ dx1, . . . , Xn ∈ dxn}, i = 0

P{θ ≤ n, µ = i,X1 ∈ dx1, . . . , Xn ∈ dxn}, i ∈M

 .

Let us denote by α
(i)
n the random variable α

(i)
n (X1, . . . , Xn) for every n ≥ 0. Then the LLR processes defined

in (1) can be written as

Λn(i, j) = log
α

(i)
n

α
(j)
n

, i ∈M, j ∈M0 \ {i}, n ≥ 1.(7)

Remark 2.2. Assumption 2.1 (i) implies that 0 < Π
(i)
n < 1 P-a.s. for every finite n ≥ 1 and i ∈M.
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Proof. We will prove that

0 <

n∏
k=1

fi(Xk)

f0(Xk)
<∞ for every i ∈M,(8)

which implies that P-a.s. 0 < Π
(i)
n = α

(i)
n /
∑
j∈M0

α
(j)
n = (α

(i)
n /

∏n
k=1 f0(Xk))/(

∑
j∈M0

α
(j)
n /

∏n
k=1 f0(Xk)) <

1 for every i ∈M, because α
(0)
n /
∏n
k=1 f0(Xk) = (1− p0)(1− p)n > 0 and

α
(j)
n∏n

k=1 f0(Xk)
= p0νj

n∏
k=1

fj(Xk)

f0(Xk)
+ (1− p0)pνj

n∑
k=1

(1− p)k−1
n∏

m=k

fj(Xm)

f0(Xm)
> 0 for every j ∈M.

To prove (8), let Ei := {x : 0 < fi(x)/f0(x) <∞} for every i ∈M. Then Assumption 2.1 (i) implies that

1 = P{X1 ∈ Ei} =
∑
j∈M

P{θ ≤ 1, µ = j}P{X1 ∈ Ei | θ ≤ 1, µ = j}+ P{θ > 1}P{X1 ∈ Ei | θ > 1}

=
∑
j∈M

P{θ ≤ 1, µ = j}
∫
Ei

fj(x)m(dx) + P{θ > 1}
∫
Ei

f0(x)m(dx).

Because P{θ ≤ 1, µ = j} > 0 for every j ∈M and P{θ > 1} > 0, we must have
∫
Ei
fj(x)m(dx) = 1 for every

j ∈M0. Therefore, for every i ∈M,

P
{

0 <

n∏
k=1

fi(Xk)

f0(Xk)
<∞

}
= P

{
0 <

fi(Xk)

f0(Xk)
<∞ for every 1 ≤ k ≤ n

}

=

n∑
t=0

∑
j∈M

P{θ = t, µ = j}P
{

0 <
fi(Xk)

f0(Xk)
<∞, 1 ≤ k ≤ n

∣∣∣∣θ = t, µ = j

}

+ P{θ > n}P
{

0 <
fi(Xk)

f0(Xk)
<∞, 1 ≤ k ≤ n

∣∣∣∣θ > n

}
=

n∑
t=0

∑
j∈M

P{θ = t, µ = j}
[ ∫

Ei

f0(x)m(dx)

]t−1[ ∫
Ei

fj(x)m(dx)

]n−t+1

+ P{θ > n}
[ ∫

Ei

f0(x)m(dx)

]n
=

n∑
t=0

∑
j∈M

P{θ = t, µ = j}+ P{θ > n} = 1. �

2.2. Conditioning. In our analysis, it turns out to be very convenient to work under the conditional

probability measures:

Pi {X1 ∈ E1, ..., Xn ∈ En} := P {X1 ∈ E1, ..., Xn ∈ En|µ = i} ,(9)

P(t)
i {X1 ∈ E1, ..., Xn ∈ En} := P {X1 ∈ E1, ..., Xn ∈ En|µ = i, θ = t} , t ≥ 0,(10)

defined for every i ∈M, n ≥ 1, and (E1× · · · ×En) ∈ En. Let Ei and E(t)
i , respectively, be the expectations

with respect to Pi and P(t)
i . Under conditional probability measures P(0)

i and P(∞)
i , the random variables

X1, X2, . . . are independent and have common probability density functions fi(·) and f0(·), respectively. We

denote by P(∞) any P(∞)
i for any i ∈ M. The LLR processes in (1) or (7) serve as the Radon-Nikodym

derivatives in changing probability measures as the next lemma shows.
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Lemma 2.3 (Changing probability measures). Fix i ∈ M, an F-stopping time τ , and an Fτ -measurable

event F . We have

P (F ∩ {µ = j, θ ≤ τ <∞}) = νi Ei
[
1F∩{θ≤τ<∞}e

−Λτ (i,j)
]
, j ∈M \ {i},

P (F ∩ {τ < θ}) = νi Ei
[
1F∩{θ≤τ<∞}e

−Λτ (i,0)
]
.

Proof. Because P(F ∩ {µ = j, θ ≤ τ <∞}) =
∑∞
n=0 P(F ∩ {τ = n} ∩ {θ ≤ n, µ = j}) equals

∞∑
n=0

E
[
1F∩{τ=n}Π

(j)
n

]
=

∞∑
n=0

E
[
1F∩{τ=n}

Π
(j)
n

Π
(i)
n

Π(i)
n

]
=

∞∑
n=0

E
[
1F∩{τ=n, θ≤n, µ=i}

Π
(j)
n

Π
(i)
n

]
=

∞∑
n=0

E
[
1{µ=i}

(
1F∩{τ=n, θ≤n}

Π
(j)
n

Π
(i)
n

)]
= νi

∞∑
n=0

Ei
[
1F∩{τ=n, θ≤n}

Π
(j)
n

Π
(i)
n

]
= νiEi

[
1F∩{θ≤τ<∞}

Π
(j)
τ

Π
(i)
τ

]
,

the first equality follows. The proof of the second equality is similar. �

The next proposition follows from Lemma 2.3 after setting F := {d = i} ∈ Fτ for every i ∈M.

Proposition 2.4. For every strategy (τ, d) ∈ ∆, c > 0, m ≥ 1 and strictly positive constants a =

(aji)i∈M,j∈M\{i}, we can rewrite (4)-(6) as

Rji(τ, d) = νi Ei
[
1{d=i, θ≤τ<∞}e

−Λτ (i,j)
]
, i ∈M, j ∈M0 \ {i},

R(c,a,m)(τ, d) =
∑
i∈M

νiR
(c,a,m)
i (τ, d)

in terms of

R
(c,a,m)
i (τ, d) := cD

(m)
i (τ) +R

(a)
i (τ, d), i ∈M, (τ, d) ∈ ∆,(11)

D
(m)
i := Ei

[
(τ − θ)m+

]
, i ∈M,(12)

R
(a)
i (τ, d) := Ei

[
1{d=i, θ≤τ<∞}G

(a)
i (τ)

]
, i ∈M, (τ, d) ∈ ∆,(13)

G
(a)
i (n) :=

∑
j∈M0\{i}

ajie
−Λn(i,j), i ∈M, n ≥ 1.(14)

Remark 2.5. In the remainder, we prove a number of results in the Pi-a.s. sense for given i ∈ M. Then

the results also hold automatically P(t)
i -a.s. for every t ≥ 1. Indeed, because P{θ <∞} = 1 and P {θ = t} > 0

for every t ≥ 1 and Pi(F ) =
∑∞
t=0 P {θ = t}P(t)

i (F ) for every F ∈ F , the knowledge of Pi(F ) = 1 implies

that P(t)
i (F ) = 1 for every t ≥ 1.

3. Asymptotically optimal sequential detection and identification strategies

We will introduce two strategies that are computationally efficient and asymptotically optimal. The first

strategy raises an alarm as soon as the posterior probability of the event that at least one of the change types

has occurred exceeds some suitable threshold, and is shown to be asymptotically optimal for the minimum

Bayes risk formulation. The second strategy is its variation expressed in terms of the LLR processes and is

shown to be asymptotically optimal for the Bayesian fixed-error probability formulation.
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Definition 3.1 ((τA, dA)-strategy for the minimum Bayes risk minimization problem). For every set A =

(Ai)i∈M of strictly positive constants, let (τA, dA) be the strategy defined by

τA := min
i∈M

τ
(i)
A and dA ∈ arg min

i∈M
τ

(i)
A , where τ

(i)
A := inf

{
n ≥ 1 : Π(i)

n >
1

1 +Ai

}
, i ∈M.(15)

Define the logarithm of the odds-ratio processes as

Φ(i)
n := log

(
Π

(i)
n

1−Π
(i)
n

)
= − log

 ∑
j∈M0\{i}

exp
(
− Λn(i, j)

) , i ∈M, n ≥ 1.(16)

Then (15) can be rewritten as

τ
(i)
A := inf

{
n ≥ 1 :

1−Π
(i)
n

Π
(i)
n

< Ai

}
= inf

{
n ≥ 1 : Φ(i)

n > − logAi

}
, i ∈M.(17)

The values of A = (Ai)i∈M determine the sizes of the polyhedrons that approximate the original optimal

stopping regions, e.g., the triangular regions when M = 2 as in Figure 1 (b), and need to be determined so

as to minimize the Bayes risk.

Definition 3.2 ((υB , dB)-strategy for the Bayesian fixed-error probability formulation). For every set B =

(Bi)i∈M and Bi = (Bij)j∈M0\{i}, i ∈M of strictly positive constants, let (υB , dB) be the strategy defined by

υB := min
i∈M

υ
(i)
B and dB ∈ arg min

i∈M
υ

(i)
B , where

υ
(i)
B := inf

{
n ≥ 1 : Λn(i, j) > − logBij for every j ∈M0 \ {i}

}
, i ∈M.

(18)

For every i ∈M, define Bi := maxj∈M0\{i}Bij , Bi := minj∈M0\{i}Bij and

Ψ(i)
n := min

j∈M0\{i}
Λn(i, j), n ≥ 1(19)

is the minimum of the LLR processes Λn(i, j), j ∈M0 \ {i} for every n ≥ 1. Then

υ
(i)
B ≤ υ

(i)
B ≤ υ

(i)
B for every i ∈M(20)

where υ
(i)
B := inf

{
n ≥ 1 : Ψ

(i)
n > − logBi

}
and υ

(i)
B := inf

{
n ≥ 1 : Ψ

(i)
n > − logBi

}
. Notice that (16) im-

plies Φ
(i)
n ≤ Λn(i, j) for every n ≥ 1 and j ∈M0 \ {i}, and hence

Ψ(i)
n ≥ Φ(i)

n , n ≥ 1.(21)

We show that, after choosing suitable A and B, the strategy (τA, dA) is asymptotically optimal for the

Bayes risk minimization problem as c goes to zero, and the strategy (υB , dB) is asymptotically optimal for

the Bayesian fixed-error probability formulation as

‖R‖ := max
i∈M, j∈M0\{i}

Rji

goes to zero—while Rji/Rki for every j, k ∈M0 \ {i} remains bounded away from zero in the sense that

minj∈M0\{i}Rji

maxj∈M0\{i}Rji
> ki for every i ∈M(22)
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for any but fixed strictly positive constants k = (ki)i∈M—and this mode of limit will still be denoted by

“‖R‖ ↓ 0” for brevity.

More precisely, we find functions A(c) of the unit sampling cost c in the Bayes risk minimization problem

and B(R) of the upper bounds (Rji)i∈M,j∈M0\{i} on the false alarm and misdiagnosis probabilities in the

Bayesian fixed-error probability formulation so that (τA(c), dA(c)) ∈ ∆ for every c > 0, (υB(R), dB(R)) ∈ ∆(R)

for every R > 0, and

R(c,a,m)(τA(c), dA(c)) ∼ inf
(τ,d)∈∆

R(c,a,m)(τ, d) as c ↓ 0,(23)

D(m)(υB(R)) ∼ inf
(τ,d)∈∆(R)

D(m)(τ) as ‖R‖ ↓ 0,(24)

for every fixed m ≥ 1 and every set a = (aji)i∈M,j∈M0\{i} of strictly positive constants. Here

“xγ ∼ yγ as γ → γ0” means that lim
γ→γ0

xγ
yγ

= 1.

In fact, we obtain stronger results than (23)-(24); namely, for every i ∈M

R
(c,a,m)
i (τA(c), dA(c)) ∼ inf

(τ,d)∈∆
R

(c,a,m)
i (τ, d) as c ↓ 0,(25)

D
(m)
i (υB(R)) ∼ inf

(τ,d)∈∆(R)
D

(m)
i (τ) as ‖R‖ ↓ 0.(26)

3.1. Limiting behaviors of (τA, dA) and (υB , dB) as A ↓ 0 and B ↓ 0. As c and R decrease to zero

in Problems 1 and 2, respectively, we expect that the optimal stopping regions shrink and one should wait

longer before an alarm is raised. In Problem 1, if the unit sampling cost c is small, then one can sample

more for the same budget to collect more information for a more accurate terminal decision. In Problem

2, if the upper bounds on the false alarm and misdiagnosis probabilities are small, then one needs to take

more observations to meet the constraints. Therefore, the values of A and B should decrease as c ↓ 0 and

‖R‖ ↓ 0, respectively. We prove that the intuition above is correct, and the change detection time tends to

∞ and the false alarm and misdiagnosis probabilities tend to zero as

‖A‖ := max
i∈M

Ai and ‖B‖ := max
i∈M,j∈M0\{i}

Bij

go to zero. Here the ratio Bi/Bi for every i ∈ M is always bounded from below by any but fixed strictly

positive number in concordance with (22).

We first study the asymptotic behaviors of the false alarm and misdiagnosis probabilities as ‖A‖ and ‖B‖
tend to zero. The upper bounds can be obtained by a direct application of Proposition 2.4.

Proposition 3.3 (Bounds on false alarm and misdiagnosis probabilities). (i) For every fixed A = (Ai)i∈M

and a = (aji)i∈M,j∈M0\{i}, we have R
(a)
i (τA, dA) ≤ aiAi for every i ∈M, where ai := maxj∈M0\{i} aji and

Rji(τA, dA) ≤ νiAi ≤ νi‖A‖ for every i ∈M and j ∈M0 \ {i}.
(ii) For every B = (Bij)i∈M,j∈M\{i}, we have Rji(υB , dB) ≤ νiBij for every i ∈M and j ∈M0 \ {i}.

Corollary 3.4. We have maxi∈MR
(a)
i (τA, dA) ↓ 0 as ‖A‖ ↓ 0 and maxi∈M,j∈M0\{i}Rji(υB , dB) ↓ 0 as

‖B‖ ↓ 0.
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Proof of Proposition 3.3. (i) We have τA = τ
(i)
A on {dA = i, τA <∞}, and (14) implies

G
(a)
i (τA) ≤ ai

∑
j∈M0\{i}

exp{−Λ
τ
(i)
A

(i, j)} = ai exp{−Φ
(i)

τ
(i)
A

} < aiAi,

where the equality and the last inequality follow from (16) and (17), respectively. Hence, we haveR
(a)
i (τA, dA) =

Ei[1{dA=i,θ≤τA<∞}G
(a)
i (τA)] ≤ aiAi. Because exp{−ΛτA(i, j)} = Π

(j)
τA /Π

(i)
τA ≤ (1− Π

(i)
τA)/Π

(i)
τA < Ai, we have

Rji(τA, dA) = νiEi[1{dA=i,θ≤τA<∞} exp{−ΛτA(i, j)}] ≤ νiAi ≤ νi‖A‖.
(ii) Because υB = υ

(i)
B on {dB = i, θ ≤ υB <∞}, and Λ

υ
(i)
B

(i, j) > − logBij , Proposition 2.4 implies that

Rji(υB , dB) = νiEi[1{dB=i,θ≤υB<∞} exp{−ΛυB (i, j)}] ≤ νiBij . �

The next proposition considers the limits of the detection times as the thresholds tend to zero.

Proposition 3.5. Fix i ∈M. We have Pi-a.s. (i) τ
(i)
A ↑ ∞ as Ai ↓ 0, (ii) τA ↑ ∞ as ‖A‖ ↓ 0, (iii) υ

(i)
B ↑ ∞

as Bi ↓ 0, and (iv) υB ↑ ∞ as ‖B‖ ↓ 0.

Proof. For (i), because (τ
(i)
A ) increases as Ai ↓ 0, it is enough to show that there is a subsequence the limit

of which exists and equals ∞, Pi-a.s. We will first show that τ
(i)
A → ∞ as Ai ↓ 0 in probability under Pi.

Fix n ≥ 1. By (15), we have

Pi
{
τ

(i)
A ≤ n

}
= Pi

( n⋃
k=1

{
Π

(i)
k >

1

1 +Ai

})
≤

n∑
k=1

Pi
{

Π
(i)
k >

1

1 +Ai

}
.

Therefore, lim supAi↓0 Pi{τ
(i)
A ≤ n} ≤

∑n
k=1 lim supAi↓0 Pi{Π

(i)
k > 1/(1 + Ai)} ≤

∑n
k=1 Pi{Π

(i)
k = 1}, which

is zero by Remark 2.2. Namely, τ
(i)
A ↑ ∞ in probability under Pi as Ai ↓ 0. Hence, there is a subsequence of

(Ai) along which Pi-a.s. τ
(i)
A ↑ ∞, which proves (i).

Because P{dA = j, µ = i} = P{dA = j, θ ≤ τA < ∞, µ = i} + P{dA = j, τA < θ, µ = i} ≤ Rij(τA, dA) +

R0j(τA, dA) ≤ 2νjAj by Proposition 3.3 (i), for every fixed n ≥ 1, we have

Pi{τA ≤ n} =
∑
j∈M

Pi{τA ≤ n, dA = j} ≤ Pi{τ (i)
A ≤ n}+

∑
j∈M\{i}

Pi{dA = j} ≤ Pi
{
τ

(i)
A ≤ n

}
+

∑
j∈M\{i}

2νj
νi
Aj ,

which goes to zero as ‖A‖ ↓ 0 by (i) and by Proposition 3.3. Namely, τA → ∞ in probability under Pi as

‖A‖ ↓ 0; therefore, there is a subsequence of (τA)A>0 that goes to ∞, Pi-a.s. as ‖A‖ ↓ 0. Because (τA)A>0

is increasing Pi-a.s. as ‖A‖ ↓ 0, its limit exists and equals ∞, Pi-a.s. as well, and (ii) follows.

Similarly, we have Pi{υ(i)
B ≤ n} ≤

∑n
k=1 Pi{Ψ

(i)
k > − logBi}. Because, for every fixed k ≥ 1,

{
Ψ

(i)
k > − logBi

}
=
{

min
j∈M0\{i}

Λk(i, j) > − logBi

}
=
{

max
j∈M0\{i}

(Π
(j)
k /Π

(i)
k ) < Bi

}
⊆
{ ∑
j∈M0\{i}

(Π
(j)
k /Π

(i)
k ) < MBi

}
=
{

(1−Π
(i)
k )/Π

(i)
k < MBi

}
=
{

Π
(i)
k > 1/(1 +MBi)

}
,

we have lim supBi↓0 Pi{υ
(i)
B ≤ n} ≤

∑n
k=1 lim supBi↓0 Pi{Π

(i)
k > 1/(1 +MBi)} =

∑n
k=1 Pi{Π

(i)
k = 1}, which

equals zero by Remark 2.2. Therefore, as in the proof of (i), Pi-a.s. υ
(i)
B → ∞ as Bi ↓ 0, and (iii) follows.

Furthermore, for every fixed n ≥ 1 we also have by Proposition 3.3 (ii)
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Pi{υB ≤ n} ≤ Pi
{
υ

(i)
B ≤ n

}
+

1

νi

∑
j∈M\{i}

(R0j(υB , dB) +Rij(υB , dB))

≤ Pi
{
υ

(i)
B ≤ n

}
+

1

νi

∑
j∈M\{i}

νj(Bj0 +Bji)
‖B‖↓0−−−−→ 0,

which proves (iv). �

4. Sufficient conditions for asymptotic optimality

Dayanik et al. [2008] proved by using the martingale convergence theorem that the posterior probability

process Πn converges P-a.s. as n ↑ ∞. Conditionally given µ = i, we expect Π
(i)
n to converge to 1 and Π

(j)
n

to zero for every j ∈ M0 \ {i} as n ↑ ∞. Consequently, Λn(i, j) → ∞ as n ↑ ∞ is expected for every

j ∈M0 \ {i}.
According to the next proposition, its average increment Λn(i, j)/n converges Pi-a.s. as n ↑ ∞ to some

strictly positive constant for every i ∈ M and j ∈ M0 \ {i}. The proof is deferred to Section 5, where the

limiting values are analytically expressed in terms of the Kullback-Leibler divergence between the alternative

probability measures.

Proposition 4.1. For every i ∈ M and j ∈ M0 \ {i}, we have Pi-a.s. Λn(i, j)/n → l(i, j) as n ↑ ∞ for

some strictly positive constant l(i, j).

4.1. The limiting behavior of the expected detection delay time. Let us fix any i ∈ M. We show

that, for small values of A and B, the stopping times τ
(i)
A and υ

(i)
B in (15) and (18) are essentially determined

by the process Λ(i, j(i)), where

j(i) ∈ arg min
j∈M0\{i}

l(i, j) is any index in M0 \ {i} that attains l(i) := min
j∈M0\{i}

l(i, j) > 0,(27)

and Pi-a.s. Λn(i, j(i)) ≈ Φ
(i)
n ≈ Ψ

(i)
n ≈ nl(i) for sufficiently large n as the next proposition suggests.

Proposition 4.2. For every i ∈M, we have Pi-a.s. (i) Φ
(i)
n /n→ l(i) and (ii) Ψ

(i)
n /n→ l(i) as n ↑ ∞.

The proof of part (i) follows from Proposition 4.1, and part (ii) follows from part (i) and Baum and

Veeravalli [1994, Lemma 5.2]. Proposition 4.2 implies the following convergence results.

Lemma 4.3. For every i ∈M and any j(i) ∈ arg minj∈M0\{i} l(i, j), we have

(i) −
τ

(i)
A

logAi

Pi-a.s.−−−−→
Ai↓0

1

l(i)
, (ii) −

(τ
(i)
A − θ)+

logAi

Pi-a.s.−−−−→
Ai↓0

1

l(i)
,

(iii) −
υ

(i)
B

logBi,j(i)

Pi-a.s.−−−−→
Bi↓0

1

l(i)
, (iv) −

(υ
(i)
B − θ)+

logBi,j(i)

Pi-a.s.−−−−→
Bi↓0

1

l(i)
,

where the limits Bi ↓ 0 for every i ∈M are taken such that for some constants 0 < bi ≤ 1, i ∈M

Bi/Bi =
minj∈M0\{i}Bij

maxj∈M0\{i}Bij
≥ bi for every i ∈M.(28)
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Remark 4.4. We shall always assume that 0 < Bij < 1 or −∞ < logBij < 0 for all i ∈ M and

j ∈ M0\{i} as we are interested in the limits of certain quantities as ‖B‖ ↓ 0. Because (28) implies that

biBi ≤ Bi ≤ Bij ≤ Bi, we have

1 ≤ − logBij

− logBi
≤ − logBi
− logBi

≤ − log(biBi)

− logBi
≤ 1 +

− log bi

− logBi
,

which implies that

1 = lim
Bi↓0

logBij

logBi
= lim
Bi↓0

logBi
logBi

= lim
Bi↓0

logBij
logBi

for every i ∈M, j ∈M0 \ {i},(29)

where the last equality follows from the first two equalities.

Proof of Lemma 4.3. First, (17) implies that Φ
(i)

τ
(i)
A −1

/(τ
(i)
A − 1) ≤ −logAi/(τ

(i)
A − 1) and −logAi/τ

(i)
A <

Φ
(i)

τ
(i)
A

/τ
(i)
A . Because Φ

(i)
n /n

Pi-a.s.−−−−→
n↑∞

l(i) by Proposition 4.2 (i) and τ
(i)
A

Pi-a.s.−−−−→
Ai↓0

∞ by Proposition 3.5 (i),

l(i) ≤ lim inf
Ai↓0

[(− logAi)/(τ
(i)
A − 1)] and lim sup

Ai↓0
[(− logAi)/τ

(i)
A ] ≤ l(i), Pi-a.s,

which proves (i). Because τ
(i)
A − θ ≤ (τ

(i)
A − θ)+ ≤ τ

(i)
A and θ/(− logAi)

Pi-a.s.−−−−→
Ai↓0

0, (ii) follows from (i).

Similarly, by (20), we have Ψ
(i)

υ
(i)
B −1

/(υ
(i)
B − 1) ≤ −logBi/(υ

(i)
B − 1) and −logBi/υ

(i)
B < Ψ

υ
(i)
B

/υ
(i)
B . Because

Ψ
(i)
n /n

Pi-a.s.−−−−→
n↑∞

l(i) by Proposition 4.2 (ii) and υ
(i)
B

Pi-a.s.−−−−→
Bi↓0

∞ by Proposition 3.5 (iii),

l(i) ≤ lim inf
Bi↓0

[(− logBi)/(υ
(i)
B − 1)] and lim sup

Bi↓0
[(− logBi)/υ

(i)
B ] ≤ l(i), Pi-a.s.

If we divide and multiply with − logBi,j(i) before we take the limits and use (29), then (iii) follows. (iv)

immediately follows from (iii) because υ
(i)
B − θ ≤ (υ

(i)
B − θ)+ ≤ υ(i)

B and θ/(− logBi,j(i))
Pi-a.s−−−→
Bi↓0

0. �

Because we want to minimize the mth moment of the detection delay time for an arbitrary m ≥ 1, we will

strengthen the convergence results of Lemma 4.3. Under suitable uniform-integrability conditions

−
τ

(i)
A

logAi

Lm(Pi)−−−−→
Ai↓0

1

l(i)
and −

υ
(i)
B

logBij(i)

Lm(Pi)−−−−→
Bi↓0

1

l(i)

for every i ∈M, which implies that

−D
(m)
i (τA)

logAi

Ai↓0−−−→ 1

l(i)
and − D

(m)
i (υB)

logBi,j(i)

Bi↓0−−−→ 1

l(i)
,

because τ
(i)
A − θ ≤ (τ

(i)
A − θ)+ ≤ τ

(i)
A and υ

(i)
B − θ ≤ (υ

(i)
B − θ)+ ≤ υ

(i)
B . Condition 4.5 below for some r ≥ m

is both necessary and sufficient for the Lm-convergences.

Condition 4.5 (Uniform Integrability). For some r ≥ m,

(i) the family
{

(τ
(i)
A /(− logAi))

r
}
Ai>0

is Pi-uniformly integrable for every i ∈M,

(ii) the family
{

(υ
(i)
B /(− logBi,j(i)))

r
}
Bi>0

is Pi-uniformly integrable for every i ∈M.

Lemma 4.6. Let m ≥ 1 be any integer.
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(i) Condition 4.5 (i) holds for some r ≥ m if and only if Ei[(τ (i)
A )m] <∞ for every Ai > 0 and

−
τ

(i)
A

logAi

Lm(Pi)−−−−→
Ai↓0

1

l(i)
and − D

(m)
i (τA)

logAi

Ai↓0−−−→ 1

l(i)
for every i ∈M.(30)

(ii) Condition 4.5 (ii) holds for some r ≥ m if and only if Ei[(υ(i)
B )m] <∞ for every Bi > 0 and

−
υ

(i)
B

logBi,j(i)

Lm(Pi)−−−−→
Bi↓0

1

l(i)
and − D

(m)
i (υB)

logBi,j(i)

Bi↓0−−−→ 1

l(i)
for every i ∈M,(31)

where the limits Bi ↓ 0 for all i ∈M are taken such that (28) is satisfied.

The proof of Lemma 4.6 follows from Lemma 4.3 and Chung [2001, Theorem 4.5.4], Gut [2005, Theorem

5.2]. By means of renewal theory one can show that Condition 4.5 holds if Λn(i, j) = X1 + · · · + Xn is a

random walk for some sequence (Xn)n≥1 of i.i.d. random variables with EX1 > 0 and E
[
(X1)r−

]
< ∞; see

Lai [1975]. In the case of the SMHT, the LLR process (Λn(i, j))n≥1 is indeed a random walk with positive

drift for every i ∈M, j ∈M0 \ {i}; see Baum and Veeravalli [1994].

4.2. The r-quick convergence. Condition 4.5 is often hard to verify. An alternative sufficient condition

can be given in terms of the r-quick convergence. The r-quick convergence of suitable stochastic processes

is known to be sufficient for the asymptotic optimalities of certain sequential rules based on non-i.i.d. obser-

vations in CPD and SMHT problems. We will show that the r-quick convergence of the LLR processes is

also sufficient for the joint sequential change detection and identification problem.

Definition 4.7 (The r-quick convergence). Let (ξn)n≥0 be any stochastic process and r > 0 be any fixed

number. Then r-quick- lim infn→∞ ξn ≥ c if and only if E [(Tδ)
r] <∞ for every δ > 0, where

Tδ := inf
{
n ≥ 1 : inf

m≥n
ξm > c− δ

}
, δ > 0.(32)

We will show that Condition 4.5 (i) and (ii) hold if (Φ
(i)
n /n)n≥1 and (Ψ

(i)
n /n)n≥1, respectively, converge

r-quickly to l(i) under Pi for every i ∈M.

Condition 4.8. For some r ≥ 1, (i) r-quick- lim infn↑∞ Φ
(i)
n /n ≥ l(i) under Pi, (ii) r-quick- lim infn↑∞Ψ

(i)
n /n ≥

l(i) under Pi for every i ∈M.

Here, Condition 4.8 (i) implies (ii) by (21). We can give a slightly stronger condition in terms of the LLR

processes as in the following remark.

Remark 4.9. Both Condition 4.8 (i) and (ii) hold if r-quick- lim infn↑∞(Λn(i, j)/n) ≥ l(i, j) under Pi for

every i ∈M and j ∈M0 \ {i}.

Proof. Because Condition 4.8 (i) implies (ii), it is enough to show for (i). Fix i ∈ M. For every fixed δ > 0

and n > (2 logM)/δ, we have

Φ(i)
n /n > l(i)− δ ⇐⇒

∑
j∈M0\{i}

e−Λn(i,j) < e−n(l(i)−δ) ⇐= e−Λn(i,j) < e−n(l(i)−δ)/M, ∀j ∈M0 \ {i}
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⇐⇒ Λn(i, j)

n
> l(i)− δ +

logM

n
, ∀j ∈M0 \ {i} ⇐=

Λn(i, j)

n
> l(i, j)− δ +

logM

n
, ∀j ∈M0 \ {i}

⇐=
Λn(i, j)

n
> l(i, j)− δ

2
, ∀j ∈M0 \ {i}.

Let Tδ(i) := inf
{
n ≥ 1 : infk≥n(Φ

(i)
k /k) > l(i) − δ

}
and Tδ(i, j) := inf

{
n ≥ 1 : infk≥n(Λk(i, j)/k) >

l(i, j)− δ
}

for j ∈M0 \ {i} and δ > 0. Then Tδ(i) ≤ (maxj∈M0\{i} Tδ/2(i, j)) ∨ (2 logM)/δ, and

Ei[(Tδ(i))r] ≤ Ei
[

max
j∈M0\{i}

(Tδ/2(i, j))r ∨
(2 logM

δ

)r]
≤

∑
j∈M0\{i}

Ei[(Tδ/2(i, j))r] +
(2 logM

δ

)r
<∞

for every δ > 0, because r-quick- lim infn↑∞(Λn(i, j)/n) ≥ l(i, j) under Pi for every j ∈M0 \ {i}. Therefore,

r-quick- lim infn↑∞ Φ
(i)
n /n ≥ l(i) under Pi for every i ∈M. �

The uniform-integrability and Lm-convergence of the processes in Condition 4.5 (i) and (ii) are implied by

the r-convergence of the processes in Condition 4.8 (i) and (ii), respectively, as stated by the next proposition.

Proposition 4.10. Let m ≥ 1. (i) If Condition 4.8 (i) holds for some r ≥ m, then (30) and Condition 4.5

(i) hold. (ii) If Condition 4.8 (ii) holds for some r ≥ m, then (31) and Condition 4.5 (ii) hold.

Proof. Fix i ∈M. (i) Lemma 4.3 (i) and Fatou’s lemma give the inequality

lim inf
Ai↓0

Ei[(τ (i)
A /(− logAi))

m] ≥ 1/l(i)m.(33)

Let us next define Tδ := inf{n ≥ 1 : infk≥n(Φ
(i)
k /k) > l(i)− δ} for every 0 < δ < l(i). Because by hypothesis

Φ
(i)
n /n converges m-quickly (m ≤ r) to l(i) as n → ∞ under Pi, Ei [(Tδ)

m
] < ∞ for every 0 < δ < l(i). On

{τ (i)
A > Tδ} ≡ {τ (i)

A − 1 ≥ Tδ}, we have

Φ
(i)

τ
(i)
A −1

/(τ
(i)
A − 1) ≥ l(i)− δ ⇐⇒ τ

(i)
A ≤ Φ

(i)

τ
(i)
A −1

/(l(i)− δ) + 1.

Because Φ
(i)

τ
(i)
A −1

< − logAi by definition, the last display implies τ
(i)
A < −logAi/(l(i)− δ)+1 on {τ (i)

A > Tδ},

and we obtain τ
(i)
A = τ

(i)
A 1{τ(i)

A >Tδ}
+ τ

(i)
A 1{τ(i)

A ≤Tδ}
< −logAi/(l(i)− δ) + 1 + Tδ. After dividing both sides

by (− logAi) and taking the m-norm on both sides, Minkowski inequality applied to the righthand side gives

Ei
[( τ

(i)
A

− logAi

)m]1/m
< Ei

[( 1

l(i)− δ
+

1

− logAi
+

Tδ
− logAi

)m]1/m
≤ 1

l(i)− δ
+

1

− logAi
+

Ei[(Tδ)m]1/m

− logAi
,

which is finite for every 0 < δ < l(i). Then lim supAi↓0 Ei[(τ
(i)
A /(− logAi))

m]1/m ≤ 1/(l(i)− δ) for 0 < δ <

l(i). Letting δ ↓ 0 gives lim supAi↓0 Ei[(τ
(i)
A /(− logAi))

m]1/m ≤ 1/l(i), which together with (33) proves (i).

(ii) Lemma 4.3 (iii) and Fatou’s lemma imply that

lim inf
Bi↓0

Ei
[(
υ

(i)
B /(− logBi,j(i))

)m]
≥ 1/l(i)m.(34)

Let us define Tδ := inf{n ≥ 1 : infk≥n(Ψ
(i)
k /k) > l(i)−δ} for every 0 < δ < l(i). Because by hypothesis Ψ

(i)
n /n

converges m-quickly (m ≤ r) to l(i) as n→∞ under Pi for every i ∈ M, we have Ei[(Tδ)m] <∞ for every

0 < δ < l(i). Using a similar argument as in the first part, we can show that υ
(i)
B < − logBi/(l(i)−δ)+1+Tδ.

After diving both sides by (− logBi) and taking the m-norm of both sides, an application of Minkowski
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inequality to the righthand side gives

Ei
[( υ

(i)
B

− logBi

)m]1/m
< Ei

[( 1

l(i)− δ
+

1

− logBi
+

Tδ
− logBi

)m]1/m
≤ 1

l(i)− δ
+

1

− logBi
+

Ei[(Tδ)m]1/m

− logBi
,

which is finite for every 0 < δ < l(i). Then lim supBi↓0 Ei[(υ
(i)
B /(− logBi))

m]1/m ≤ 1/(l(i)− δ) for 0 < δ <

l(i). Letting δ ↓ 0 gives lim supBi↓0 Ei[(υ
(i)
B /(− logBi))

m]1/m ≤ 1/l(i). After raising both sides to power

m, the inequality υ
(i)
B ≤ υ

(i)
B implies lim supBi↓0 Ei[(υ

(i)
B /(− logBi))

m] ≤ lim supBi↓0 Ei[(υ
(i)
B /(− logBi))

m] ≤
1/l(i)m. Finally, dividing and multiplying the lefthand side with (− logBi,j(i))

m prior to taking the limit give

lim supBi↓0 Ei[(υ
(i)
B /(− logBi,j(i)))

m] ≤ 1/l(i)m thanks to (29). The last inequality and (34) prove (ii). �

5. The convergence results for the LLR processes

In this section, we will prove Proposition 4.1 and obtain the limits l(i, j) for every i ∈M and j ∈M0\{i},
which can be expressed in terms of the Kullback-Leibler divergence of the pre- and post-change probability

density functions and the exponential decay rate % in (2) of the disorder time probability distribution. Under

some mild condition, we show that the convergence also holds in Lr for every r ≥ 1.

Let us denote the Kullback-Leibler divergence of fi from fj by

q(i, j) :=

∫
E

(
log

fi(x)

fj(x)

)
fi(x)m(dx), i ∈M, j ∈M0 \ {i},(35)

which always exists and is non-negative. Furthermore, Assumption 2.1 ensures that

q(i, j) > 0, i ∈M, j ∈M0 \ {i}.(36)

To ensure that E(0)
i [log(f0(X1))/(fj(X1))] exists for every i ∈ M, j ∈ M0 \ {i}, we make Assumption 5.1

below.

Assumption 5.1. For every i ∈M, we assume that q(i, 0) <∞.

Since E(0)
i [(log(fi(X1)/fj(X1)))−] ≤ 1 for every i ∈ M, j ∈ M0 \ {i}, Assumption 5.1 guarantees the

existence of

E(0)
i

[
log

f0(X1)

fj(X1)

]
= E(0)

i

[
log

fi(X1)

fj(X1)

]
− E(0)

i

[
log

fi(X1)

f0(X1)

]
= q(i, j)− q(i, 0), i ∈M, j ∈M0 \ {i}.(37)

5.1. Decomposition of the LLR Processes. We will decompose each LLR process (1) into a random

walk with some positive drift and some stochastic process whose running average increment vanishes in the

limit. In the SMHT case (namely, when p0 = 1), for every i ∈M and j ∈M \ {i},

Λn(i, j) = log

(
νi
∏n
k=1 fi(Xk)

νj
∏n
k=1 fj(Xk)

)
= log

(
νi
νj

)
+

n∑
k=1

log

(
fi(Xk)

fj(Xk)

)
, n ≥ 1,

is a Pi-random walk. Its running average increment Λn(i, j)/n converges Pi-a.s. to the Kullback-Leibler

divergence q(i, j) as n ↑ ∞ by the strong law of large numbers (SLLN). Although (Λ(i, j))j∈M0\{i}, for

p0 6= 0, are not Pi-random walks, this observation nonetheless motivates us to approximate them by some

random walks. Let

Γi := {j ∈M \ {i} : q(i, j) < q(i, 0) + %} , i ∈M.(38)
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We show that Λ(i, j) can be approximated by a random walk with drift q(i, j) > 0 if j ∈ Γi and with

q(i, 0) + % > 0 otherwise; namely, with drift min(q(i, j), q(i, 0) + %) if j ∈ M \ {i} and q(i, 0) + % if j = 0.

Define

L(j)
n :=


log(1− p0) + n log(1− p), j = 0

log

(
p0 + (1− p0)p

n∑
k=1

k−1∏
l=1

(
(1− p)f0(Xl)

fj(Xl)

))
, j ∈M

 ,(39)

K(j)
n := log

(
p0

n∏
k=1

(
1

1− p
fj(Xk)

f0(Xk)

)
+ (1− p0)p

n∑
k=1

n∏
l=k

(
1

1− p
fj(Xl)

f0(Xl)

))

≡ log

[
n∏
k=1

(
1

1− p
fj(Xk)

f0(Xk)

)]
+ L(j)

n ,(40)

for every n ≥ 1 and j ∈M0. Then it can be checked easily that, for any j ∈M0 \ {i}, we have

α
(i)
n

α
(j)
n

=


νi expL

(i)
n

1− p0

n∏
l=1

(
1

1− p
fi(Xl)

f0(Xl)

)
, j = 0

νi expL
(i)
n

νj expL
(j)
n

n∏
l=1

fi(Xl)

fj(Xl)
=

νi expL
(i)
n

νj expK
(j)
n

n∏
l=1

(
1

1− p
fi(Xl)

f0(Xl)

)
, j ∈M \ {i}


.(41)

By (7), after taking logarithms on both sides, each LLR process can be written as

Λn(i, j) =

n∑
l=1

hij(Xl) + εn(i, j), j ∈M0 \ {i},(42)

where

hij(x) :=


log

fi(x)

f0(x)
+ %, j ∈M0 \ (Γi ∪ {i}),

log
fi(x)

fj(x)
, j ∈ Γi

 , x ∈ E(43)

and

εn(i, j) :=


L(i)
n − log(1− p0) + log νi, j = 0

L(i)
n − L(j)

n + log νi − log νj , j ∈ Γi

L(i)
n −K(j)

n + log νi − log νj , j ∈M \ (Γi ∪ {i})

 , n ≥ 1.(44)

Moreover,
∑n
l=1 hij(Xl) can be split into post- and pre-change terms, and we have

Λn(i, j) =

n∑
l=θ∨1

hij(Xl) +

n∧(θ−1)∑
l=1

hij(Xl) + εn(i, j), n ≥ 1,(45)

for every fixed j ∈ M0 \ {i}. Notice that the first term in (45) is conditionally a random walk under P(t)
i

given θ = t for every t ≥ 0.

5.2. The convergence of the LLR processes. Fix i ∈ M and j ∈ M0 \ {i}. In view of (42), we can

explore the convergence results for (
∑n
l=1 hij(Xl))/n and εn(i, j)/n separately. For the first term, notice
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that

1

n

n∑
l=1

hij(Xl) =
1

n

n∑
l=θ∨1

hij(Xl) +
1

n

n∧(θ−1)∑
l=1

hij(Xl).

Because θ is an a.s. finite random variable, the first term on the righthand side converges P(t)
i -a.s. to

l(i, j) :=

 q(i, 0) + %, j = 0

min {q(i, j), q(i, 0) + %} , j ∈M \ {i}

(46)

≡

 q(i, 0) + %, j ∈M0 \ (Γi ∪ {i})

q(i, j), j ∈ Γi

(47)

by the SLLN, while the second term converges to zero. Then Remark 2.5 implies Lemma 5.2, and, under

some mild additional conditions, Lemma 5.3 below.

Lemma 5.2. For every i ∈M and j ∈M0 \ {i}, we have (1/n)
∑n
l=1 hij(Xl)

Pi-a.s.−−−−→
n↑∞

l(i, j).

Lemma 5.3. For every i ∈M, j ∈M0 \ {i} and r ≥ 1, we have (1/n)
∑n
l=1 hij(Xl)

Lr(Pi)−−−−→
n↑∞

l(i, j), if

E(∞) |hij(X1)|r <∞ and E(0)
i |hij(X1)|r <∞.(48)

Proof of Lemma 5.3. By Lemma 5.2, it is sufficient to show that
(
|(1/n)

∑n
l=1 hij(Xl)|

r)
n≥1

is uniformly

integrable under Pi. The running sum
∑n
l=1 hij(Xl) is a random walk under both P(∞) and P(0)

i , and it is

uniformly integrable under both measures because (48) holds; see Gut [1988, Theorem 4.1]. Hence, it is also

uniformly integrable as well under Pi because EiZ ≤ E(∞)Z + E(0)
i Z for every random variable Z. �

Note that (48) holds if and only if the following condition holds.

Condition 5.4. For every i ∈M, j ∈M0 \ {i}, and r ≥ 1, suppose that

E(∞)

∣∣∣∣log
fi(X1)

fj(X1)

∣∣∣∣r <∞ and E(0)
i

∣∣∣∣log
fi(X1)

fj(X1)

∣∣∣∣r <∞, if j ∈ Γi,

E(∞)

∣∣∣∣log
fi(X1)

f0(X1)

∣∣∣∣r <∞ and E(0)
i

∣∣∣∣log
fi(X1)

f0(X1)

∣∣∣∣r <∞, if j /∈ Γi.

We now show that εn(i, j)/n converges Pi-a.s. to zero. The convergence result holds in Lr(Pi) as well for

r ≥ 1 under a mild condition. To show this, we first determine the limits of (L
(·)
n /n)n≥1 and (K

(·)
n /n)n≥1 as

n ↑ ∞ under Pi. We will need the following lemma, the proof of which is deferred to the appendix.

Lemma 5.5. Let (ξn)n≥1 be a positive stochastic process and T an a.s. finite random time defined on the

same probability space (Ω, E ,P). Given T , the random variables (ξn)n≥1 are conditionally independent, and

(ξn)1≤n≤T−1 and (ξn)n≥T have common conditional probability distributions P∞ and P0 on (R,B(R)), the

expectations with respect to which are denoted by E∞ and E0, respectively. Suppose that E∞[log ξ1] and
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E0[log ξ1] exist, and define

λ := E0[log ξ1], α := E∞[ξ1], β := E0[ξ1], γ := max{α, β},

Φn :=
1

n
log

n∏
k=1

ξk, ψn := log

(
c+

n∑
l=1

elΦl

)
, ηn :=

ψn
n
, n ≥ 1

(49)

for some fixed constant c > 0. Then the followings results hold.

(i) We have ηn
P-a.s.−−−→
n↑∞

λ+ := max{λ, 0}.

(ii) If λ < 0, then the process ψn converges as n ↑ ∞ to a finite limit P-a.s.

(iii) If γ <∞, then (|ηn|r)n≥1 is P-uniformly integrable.

(iv) If r ≥ 1 and max{E∞ [| log ξ1|r] ,E0 [| log ξ1|r]} < ∞, then (|Φn|q)n≥1 is uniformly integrable for

every 0 ≤ q ≤ r.

Lemma 5.6. We have the followings for every i ∈M:

(i) L
(i)
n /n

Pi-a.s.−−−−→
n↑∞

0.

(ii) L
(j)
n /n

Pi-a.s.−−−−→
n↑∞

[q(i, j)− q(i, 0)− %]+ for every j ∈M \ {i}.

(iii) K
(j)
n /n

Pi-a.s.−−−−→
n↑∞

[q(i, j)− q(i, 0)− %]− for every j ∈M \ {i}.

(iv) L
(i)
n converges Pi-a.s. as n ↑ ∞ to a finite random variable L

(i)
∞ .

(v) L
(j)
n converges Pi-a.s. as n ↑ ∞ to a finite random variable L

(j)
∞ for every j ∈ Γi.

(vi) For every j ∈M, (|L(j)
n /n|r)n≥1 is Pi-uniformly integrable for every r ≥ 1, if

E(∞) [f0(X1)/fj(X1)] <∞ and E(0)
i [f0(X1)/fj(X1)] <∞.(50)

(vii) For every j ∈ M, (|K(j)
n /n|q)n≥1 is Pi-uniformly integrable for every 0 ≤ q ≤ r, if (50) holds and

for some r ≥ 1

E(∞)

∣∣∣∣log
fj(X1)

f0(X1)

∣∣∣∣r <∞ and E(0)
i

∣∣∣∣log
fj(X1)

f0(X1)

∣∣∣∣r <∞.(51)

Proof. Note that for every j ∈M and n ≥ 2,

L(j)
n = log

(
p0 + (1− p0)p

n∑
k=1

k−1∏
l=1

(
(1− p)f0(Xl)

fj(Xl)

))

= log
(
p0 + (1− p0)p+ (1− p0)p

n−1∑
k=1

k∏
l=1

(
(1− p)f0(Xl)

fj(Xl)

))

= log [(1− p0)p] + log
(p0 + (1− p0)p

(1− p0)p
+

n−1∑
k=1

k∏
l=1

(
(1− p)f0(Xl)

fj(Xl)

))
= log [(1− p0)p] + ψn−1

if in (49) we set ξl := (1− p) f0(Xl)
fj(Xl)

and c := p0+(1−p0)p
(1−p0)p > 0.

Given that µ = i and θ = t for any fixed i ∈ M and t ≥ 1, the random variables ξt, ξt+1, . . . are

conditionally i.i.d. with a common distribution independent of t; thus, the change time θ plays the role of

the random time T in Lemma 5.5. Then by Lemma 5.5 (i) and (37) we have

L(j)
n /n

Pi−a.s.−−−−−→
n↑∞

[
E(0)
i

[
log

(
(1− p)f0(X1)

fj(X1)

)]]
+

= [q(i, j)− q(i, 0)− %]+ ,
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which proves (ii) immediately if j ∈ M \ {i}, and (i) and (iv) by Lemma 5.5 (ii) if j = i after noticing that

E(0)
i [log((1− p) f0(X1)

fi(X1) )] = q(i, i)− q(i, 0)− % = −q(i, 0)− % < 0, by (36). Similarly, if j ∈ Γi, then (v) holds

by Lemma 5.5 (ii), since E(0)
i

[
log
(

(1− p) f0(X1)
fj(X1)

)]
= q(i, j)− q(i, 0)− % < 0 by the definition of Γi. Finally,

(40), the SLLN and (ii) give

1

n
K(j)
n =

1

n

n∧(θ−1)∑
l=1

log

(
1

1− p
fj(Xl)

f0(Xl)

)
+

1

n

n∑
l=θ∧n

log

(
1

1− p
fj(Xl)

f0(Xl)

)
+

1

n
L(j)
n

Pi−a.s.−−−−−→
n↑∞

0− q(i, j) + q(i, 0) + %+ [q(i, j)− q(i, 0)− %]+ ,

which equals [q(i, j)− q(i, 0)− %]− and proves (iii). For the proof of (vi), note that by Minkowski’s inequality∣∣∣∣ 1nL(j)
n

∣∣∣∣r =

∣∣∣∣ log[(1− p0)p]

n
+
n− 1

n

ψn−1

n− 1

∣∣∣∣r ≤ (∣∣∣∣ log[(1− p0)p]

n

∣∣∣∣+

∣∣∣∣n− 1

n

ψn−1

n− 1

∣∣∣∣)r
≤ 2r−1

(∣∣∣∣ log[(1− p0)p]

n

∣∣∣∣r +

∣∣∣∣n− 1

n

∣∣∣∣r ∣∣∣∣ψn−1

n− 1

∣∣∣∣r) ≤ 2r−1

(∣∣∣∣ log[(1− p0)p]

n

∣∣∣∣r +

∣∣∣∣ψn−1

n− 1

∣∣∣∣r) .
Because (|[log(1 − p0)p]/n|r)n≥1 is bounded, and according to Lemma 5.5 (iii) the process (|ψn/n|r)n≥1 is

uniformly integrable under Pi for every r ≥ 1 when (50) is satisfied, we have (vi). Finally, for the proof of

(vii), it follows from (40) that∣∣∣ 1
n
K(j)
n

∣∣∣r =
∣∣∣ 1
n

log

n∏
k=1

( 1

1− p
fj(Xk)

f0(Xk)

)
+

1

n
L(j)
n

∣∣∣r ≤ 2r−1
(∣∣∣ 1
n

log

n∏
k=1

( 1

1− p
fj(Xk)

f0(Xk)

)∣∣∣r +
∣∣∣ 1
n
L(j)
n

∣∣∣r).
Because (50) holds, (|L(j)

n /n|)n≥1 is uniformly integrable by (vi). If we set ξk := [1/(1− p)][fj(Xk)/f0(Xk)]

for every k ≥ 1 in (49), then (51) and Lemma 5.5 (iv) imply that (| 1n log
∏n
k=1( 1

1−p
fj(Xk)
f0(Xk) )|r)n≥1 is uniformly

integrable. Therefore, (|K(j)
n /n|r)n≥1 is uniformly integrable, and the proof of (vii) is complete. �

Notice in Lemma 5.6 (vi) that in order for L
(i)
n to converge in Lr under Pi to zero, it is sufficient to have

E(∞) [f0(X1)/fi(X1)] <∞(52)

because E(0)
i [f0(X1)/fi(X1)] =

∫
E
f0(x)m(dx) = 1 <∞. The characterization of εn(i, j) in (44) leads to the

next convergence result.

Lemma 5.7. For every i ∈M and j ∈M0 \ {i}, we have εn(i, j)/n
Pi-a.s.−−−−→
n↑∞

0.

Moreover, the convergence holds in Lr under Pi as well for some r ≥ 1 given the following condition.

Condition 5.8. Given i ∈M, j ∈M0 \ {i} and r ≥ 1, we suppose that (52) holds and (i) j ∈ Γi and (50)

holds, or (ii) j /∈ Γi or j = 0 and (51) holds for the given r.

Lemma 5.9. Fix i ∈M, j ∈M0 \ {i} and r ≥ 1. Under Condition 5.8, we have εn(i, j)/n
Lr(Pi)−−−−→
n↑∞

0.

By combining the results in Lemmas 5.6-5.7, Proposition 4.1 indeed holds with l(·, ·) as defined in (46)-

(47). Moreover, the following convergence results hold by Lemmas 5.6 and 5.9.

Proposition 5.10. For every i ∈ M and j ∈ M0 \ {i}, we have Λn(i, j)/n
Lr(Pi)−−−−→
n↑∞

l(i, j) for some r ≥ 1 if

Conditions 5.4 and 5.8 hold for the given r.
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Remark 5.11. (i) Observe from (46) that we have l(i, j) ≤ l(i, 0) for every i ∈ M and j ∈ M0 \ {i},
and the equality holds if and only if j ∈M0 \ (Γi ∪ {i}).

(ii) Because q(i, j) = 0 if and only if
∫
{x∈E:fi(x)6=fj(x)} fi(x)m(dx) = 0, Assumption 2.1 guarantees that

l(i, j) > 0 for every i ∈M and j ∈M0 \ {i}.
(iii) We later assume, in Section 7 below for higher-order approximations, that there is a unique j(i) ∈

M0 \ {i} such that l(i) = l(i, j(i)) = minj∈M0\{i} l(i, j) for every i ∈ M. Then (i) implies l(i) <

l(i, 0) and q(i, j(i)) < q(i, 0) + %, and j(i) ∈ Γi and Γi 6= ∅.

Remark 5.12. Fix i ∈M and j ∈M0 \ {i}. By (44) and Lemma 5.6, εn(i, j) ≤ L(i)
n + cj ≤ L(i)

∞ + cj <∞,

Pi-a.s. for every n ≥ 1, where

cj :=

 − log(1− p0) + log νi, j = 0

− log(p0 + (1− p0)p) + log νi − log νj , j ∈M \ {i}

 .

In view of (42), Assumption 2.1 (i) ensures that Λn(i, j) <∞ Pi-a.s. for n ≥ 1, and Remark 2.2 holds.

In this section, we proved a number of results on the convergence of the LLR processes. However, those

results do not guarantee their r-quick convergence. A sufficient condition derived by means of Jensen’s

inequality is given in Appendix A.

6. Asymptotic optimality

We now prove the asymptotic optimalities of (τA, dA) and (υB , dB) for Problems 1 and 2 under Condition

4.5 (i) and (ii), respectively. We first derive a lower bound on the expected detection delay under the optimal

strategy.

6.1. The lower bound of the expected detection delay time under the optimal strategy. The

lower bound on the expected detection delay under the optimal strategy can be obtained similarly to CPD and

SMHT; see Baum and Veeravalli [1994], Dragalin et al. [1999], Dragalin et al. [2000], Lai [2000], Tartakovsky

and Veeravalli [2004] and Baron and Tartakovsky [2006].

Lemma 6.1. For every i ∈M, we have

lim inf
Ri↓0

inf
(τ,d)∈∆(R)

D
(m)
i (τ)(

| log
(
Rj(i)i/νi

)
|/l(i)

)m ≥ 1.

The proof of the lemma is given in the appendix. This lower bound and Lemma 4.6 can be combined to

obtain asymptotic optimality for both problems.

6.2. Asymptotic optimality of (τA, dA) for the Bayes risk minimization problem. We now study

how to set A in terms of c in order to achieve asymptotic optimality in Problem 1.

We see from Proposition 3.3 and Lemma 4.6 that the false alarm and misdiagnosis probabilities decrease

faster than the expected delay time and are negligible when A and B are small. Indeed, we have, in view of

the definition of the Bayes risk in (11), by Proposition 3.3 and Lemma 4.6,

R
(c,a,m)
i (τA, dA) ∼ c

(
− logAi
l(i)

)m
+ σiAi ∼ c

(
− logAi
l(i)

)m
,(53)
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as Ai ↓ 0 for any 0 < σi < ai for every i ∈M.

This motivates us to choose the value of Ai such that it minimizes

g
(c)
i (x) := c

(
− log x

l(i)

)m
+ σix,(54)

over x ∈ (0,∞). Hence let

Ai(c) ∈ arg min
x∈(0,∞)

g
(c)
i (x), c > 0.(55)

For example, Ai(c) = c/(σil(i)) when m = 1. It can be easily verified that for every m ≥ 1 we have

Ai(c)
c↓0−−→ 0 in such a way that logAi(c) ∼ log c as c ↓ 0. Hence we have

R
(c,a,m)
i (τA(c), dA(c)) ∼ g

(c)
i (Ai(c)) ∼ c

(
− log c

l(i)

)m
as c ↓ 0.(56)

Consequently, it is sufficient to show that

lim inf
c↓0

inf(τ,d)∈∆R
(c,a,m)
i (τ, d)

g
(c)
i (Ai(c))

≥ 1.(57)

The proof of the asymptotic optimality below is similar to that of Theorem 3.1 in Baron and Tartakovsky

[2006] for CPD and can be found in the appendix.

Proposition 6.2 (Asymptotic optimality of (τA, dA) in Problem 1). Fix m ≥ 1 and a set of strictly positive

constants a. Under Condition 4.5 (i) or 4.8 (i) for the given m, the strategy (τA(c), dA(c)) is asymptotically

optimal as c ↓ 0; that is (25) holds for every i ∈M.

It should be remarked that the asymptotic optimality results in this section hold for any 0 < σi < ai.

However, for higher-order approximation, it is ideal to choose such that

R
(a)
i (τA, dA)/Ai

Ai↓0−−−→ σi;(58)

in Section 7, we achieve this value using nonlinear renewal theory.

6.3. Asymptotic optimality for the Bayesian fixed-error probability formulation. We now show

that strategy (υB , dB) is asymptotically optimal for Problem 2. By Proposition 3.3, if we set

Bij(R) := Rji/νi for every i ∈M, j ∈M0 \ {i},

then we have (υB(R), dB(R)) ∈ ∆(R) for every fixed positive constants R = (Rji)i∈M,j∈M0\{i}.

Proposition 6.3 (Asymptotic optimality of (υB , dB) in Problem 2). Fix m ≥ 1. Under Condition 4.5 (ii)

or 4.8 (ii) for the given m, the strategy (υB(R), dB(R)) is asymptotically optimal as ‖R‖ ↓ 0; that is (26)

holds for every i ∈M.

Proof. By Lemma 6.1 and because (υB(R), dB(R)) ∈ ∆(R), we have

lim inf
Ri↓0

D
(m)
i (υB(R))(

| log
(
Rj(i)i/νi

)
|/l(i)

)m ≥ 1.
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On the other hand, by Lemma 4.6 (ii), υB(R) ≤ υ
(i)

B(R)
and because Ri ↓ 0 is equivalent to Bi,j(i)(R) ↓ 0,

lim sup
Ri↓0

Dm
i (υB(R))(

| log
(
Rj(i)i/νi

)
|/l(i)

)m = lim sup
Ri↓0

Dm
i (υB(R))(

| logBij(i)(R)|/l(i)
)m ≤ 1.

�

7. Higher-Order approximations

In this section, we derive a higher-order asymptotic approximation for the minimum Bayes risk in Problem

1 by choosing the values of σ in (53) proposed in the previous section. Proposition 3.3 (i) gives an upper

bound on (R
(a)
i (·, ·))i∈M , and here we investigate if there exists some σ such that (58) holds.

7.1. Asymptotic behavior of the false alarm and misdiagnosis probabilities. Fix i ∈ M. By (13)

and because τA = τ
(i)
A on {dA = i, θ ≤ τA <∞}, we have

R
(a)
i (τA, dA)/Ai = Ei

[
1{dA=i, θ≤τA<∞}G

(a)
i (τ

(i)
A )/Ai

]
= Ei

[
exp

{
−H(a)

i (Ai)
}]

, where(59)

H
(a)
i (Ai) := − logG

(a)
i (τ

(i)
A ) + logAi − log 1{dA=i, θ≤τA<∞}.(60)

Suppose that H
(a)
i (Ai) is bounded from below by some constant b and H

(a)
i (Ai) converges as Ai ↓ 0

in distribution to some random variable H
(a)
i under Pi. Then, because x 7→ e−x is continuous and

bounded on x ∈ [b,∞], we have R
(a)
i (τA, dA)/Ai

Ai↓0−−−→ Ei[exp{−H(a)
i }], and therefore (58) holds with

σi = Ei[exp{−H(a)
i }].

Recall that τ
(i)
A is the first time the process Φ

(i)
n exceeds the threshold − logAi, and − logAi ↑ ∞ ⇐⇒

Ai ↓ 0. The following lemma shows that the convergence holds on condition that the overshoot

Wi(Ai) := Φ
(i)

τ
(i)
A

− (− logAi) = Φ
(i)

τ
(i)
A

+ logAi ≥ 0(61)

converges in distribution as Ai ↓ 0 to some random variable Wi under Pi.

Lemma 7.1. Fix i ∈ M. If j(i) is unique and the overshoot Wi(Ai) in (61) converges in distribution as

Ai ↓ 0 to some random variable Wi under Pi, then (58) holds with σi := aj(i)iEi[exp{−Wi}].

Proof. It is sufficient to prove that H
(a)
i (Ai) in (60) converges in distribution as Ai ↓ 0 to Wi − log aj(i)i

under Pi and that H
(a)
i (Ai) is bounded from below by some constant. Because

G
(a)
i (n) =

∑
j∈M0\{i}

ajie
−Λn(i,j) =

( ∑
j∈M0\{i}

e−Λn(i,j)
)∑

j∈M0\{i} ajie
−Λn(i,j)∑

j∈M0\{i} e
−Λn(i,j)

, n ≥ 1,

and we have by (16)

− logG
(a)
i (τ

(i)
A ) + logAi = Wi(Ai)− log

∑
j∈M0\{i} aji exp

{
− Λ

τ
(i)
A

(i, j)
}∑

j∈M0\{i} exp
{
− Λ

τ
(i)
A

(i, j)
} .(62)
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Because j(i) is unique and Λn(i, j)/n
Pi-a.s.−−−−→
n↑∞

l(i, j) for every j ∈ M0 \ {i} and l(i) < l(i, j) for every

j ∈M0 \ {i, j(i)}, we have∑
j∈M0\{i} ajie

−Λn(i,j)∑
j∈M0\{i} e

−Λn(i,j)
=
aj(i)i +

∑
j∈M0\{i,j(i)} aji exp

(
n
[

Λn(i,j(i))
n − Λn(i,j)

n

])
1 +

∑
j∈M0\{i,j(i)} exp

(
n
[

Λn(i,j(i))
n − Λn(i,j)

n

]) Pi-a.s.−−−−→
n↑∞

aj(i)i.

Because τ
(i)
A

Pi-a.s.−−−−→
Ai↓0

∞ by Proposition 3.5, this implies

− log

∑
j∈M0\{i} aji exp

{
−Λ

τ
(i)
A

(i, j)
}

∑
j∈M0\{i} exp

{
−Λ

τ
(i)
A

(i, j)
} Pi-a.s.−−−−→

Ai↓0
− log aj(i)i.(63)

By Proposition 3.3, Pi {dA = i, θ ≤ τA <∞} = 1− 1
νi

∑
j∈M0\{i}Rji(τA, dA) converges to 1 as Ai ↓ 0; i.e.,

1{dA=i, θ≤τA<∞}
in probability under Pi−−−−−−−−−−−−−−→

Ai↓0
1.(64)

The assumption on the convergence of Wi(Ai) together with (63)-(64) shows the convergence of H
(a)
i (Ai).

Finally, because (62) is bounded from below by − log ai and − log 1{dA=i, θ≤τA<∞} ≥ 0, H
(a)
i (Ai) is

bounded from below by − log ai. �

In Lemma 7.1 above, σi does not depend on aji for every j ∈ M0 \ {i, j(i)} and therefore we see that

Rji(τA, dA) is negligible compared with Rj(i)i(τA, dA) for every j ∈M0 \ {i, j(i)} for small A.

7.2. Nonlinear renewal theory and the overshoot distribution. We now see that Lemma 7.1 indeed

holds via nonlinear renewal theory on condition that j(i) is unique. We obtain the limiting distribution of

the overshoot (61).

Observe that we have for every k ∈M0 \ {i}

Φ(i)
n = − log

∑
j∈M0\{i}

exp (−Λn(i, j)) = Λn(i, k)− ηn(i, k), n ≥ 1 where(65)

ηn(i, k) = log
(

1 +
∑

j∈M0\{i,k}

exp(Λn(i, k)− Λn(i, j))
)
, n ≥ 1.(66)

By (45) and (65), we have Φ
(i)
n =

∑n
l=θ∨1 hij(i)(Xl) + ξn(i, j(i)), where

ξn(i, j(i)) :=

n∧(θ−1)∑
l=1

hij(i)(Xl) + εn(i, j(i))− ηn(i, j(i)), n ≥ 1, j(i) ∈ arg min
j∈M0

l(i, j).(67)

We will take advantage of the fact that, given θ, the process
∑n
l=θ∨1 hij(i)(Xl) is conditionally a random

walk and ξn(i, j(i)) can be shown to be “slowly-changing”, in the sense that ξn+1(i, j(i))− ξn(i, j(i)) ≈ 0 for

large n. This implies that the increments of the slowly-changing process ξn(i, j(i)) are negligible compared

to those of the random walk term
∑n
l=θ∨1 hij(i)(Xl) at every large n. This result can be used to obtain the

overshoot distribution of the process Φ(i) at its boundary-crossing time τ
(i)
A for small Ai by means of the

nonlinear renewal theory [Woodroofe, 1982, Siegmund, 1985]. Let us firstly give a few definitions and state

a fundamental theorem of the nonlinear renewal theory.
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Definition 7.2. A sequence of random variables (ξn)n≥1 is called uniformly continuous in probability

(u.c.i.p.) if for every ε > 0, there is δ > 0 such that P{max0≤k≤nδ |ξn+k − ξn| ≥ ε} ≤ ε for every n ≥ 1.

Definition 7.3. A sequence of random variables (ξn)n≥1 is said to be slowly-changing if it is u.c.i.p. and

max {|ξ1|, ..., |ξn|}
n

in probability−−−−−−−−→
n↑∞

0.(68)

Remark 7.4. If a process converges a.s. to a finite random variable, then it is a slowly-changing process.

Moreover, the sum of two slowly-changing processes is also a slowly-changing process.

The following theorem states that, if a process is the sum of a random walk with positive drift and a slowly-

changing process, then the overshoot at the first time it exceeds some threshold has the same asymptotic

distribution as that of the overshoot of the random walk, as the threshold tends to infinity.

Theorem 7.5. (Woodroofe, 1982, Theorem 4.1; Siegmund, 1985, Theorem 9.12) On some (Ω, E ,P), let

(Zn)n≥1 be a sequence of i.i.d. random variables with some common nonarithmetic distribution and mean

0 < EZ1 <∞. Let (ξn)n≥1 be a slowly-changing process and that (Zk)k≥n+1, is independent of (ξl)1≤l≤n for

every n ≥ 1. If T̃b := inf{n ≥ 1 :
∑n
i=1 Zi − ξn > b} and Tb := inf{n ≥ 1 :

∑n
i=1 Zi > b} for every b ≥ 0,

Wb :=

T̃b∑
i=1

Zi − ξT̃b − b
d−−−→

b↑∞
W,

where W is a random variable with distribution

P {W ≤ w} =

∫ w
0

P
{∑T0

i=1 Zi > s
}

ds

E
[∑T0

i=1 Zi

] , 0 ≤ w <∞.

We fix i ∈M and obtain the limiting distribution of the overshoot Wi(Ai) as Ai ↓ ∞ using Theorem 7.5.

Lemma 7.6. Fix i ∈M and t ≥ 0. If j(i) is unique, then ξn(i, j(i)) is slowly-changing under P(t)
i .

Proof. It is sufficient to show that ξn(i, j(i)) converges P(t)
i -a.s. to a finite random variable by Remarks 2.5

and 7.4. Firstly, because j(i) is unique, j(i) ∈ Γi by Remark 5.11 (3). Consequently, εn(i, j(i)) converges

P(t)
i -a.s. to a finite random variable by Lemma 5.6 (iv) and (v). Secondly, ηn(i, j(i)) converges P(t)

i -a.s. to

zero by Propositions 4.1 and 4.2. Finally, limn↑∞
∑n∧(θ−1)
l=1 log

(
fi(Xl)/fj(i)(Xl)

)
exists P(t)

i -a.s. and equals

P(t)
i -a.s. finite random variable

∑θ−1
l=1 log

(
fi(Xl)/fj(i)(Xl)

)
. �

For every t ≥ 1 and j(i) ∈ arg minj∈M0\{i} l(i, j), define a stopping time,

T
(t)
i := inf

{
n ≥ t :

n∑
l=t

log
( fi(Xl)

fj(i)(Xl)

)
> 0
}
,

and random variable W
(t)
i whose distribution is given by

P(t)
i (W

(t)
i ≤ w) =

∫ w
0

P(t)
i

{∑T
(t)
i

l=t log fi(Xl)
fj(i)(Xl)

> s
}

ds

E(t)
i

[∑T
(t)
i

l=t log fi(Xl)
fj(i)(Xl)

] , 0 ≤ w <∞.(69)

The next lemma follows immediately from Theorem 7.5.
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Lemma 7.7. Fix i ∈ M and t ≥ 0. If j(i) is unique, then the overshoot Wi(Ai) converges to W
(t)
i in

distribution under P(t)
i as Ai ↓ 0.

Note that the distribution of W
(t)
i under P(t)

i is identical to that of W
(0)
i under P(0)

i for every t ≥ 1, which

leads to Lemma 7.8 below.

Lemma 7.8. Fix i ∈ M. If j(i) is unique, then the overshoot Wi(Ai) converges to a random variable Wi

in distribution under Pi as Ai ↓ 0 where the distribution of Wi under Pi is identical to that of W
(0)
i in (69)

under P(0)
i .

Proof. Let g : R 7→ R be a continuous and bounded. Then limAi↓0 Ei[g(Wi(Ai))] =

lim
Ai↓0

∞∑
t=0

Pi{θ = t}E(t)
i [g(Wi(Ai))] =

∞∑
t=0

Pi {θ = t} lim
Ai↓0

E(t)
i [g (Wi(Ai))] =

∞∑
t=0

Pi {θ = t}E(t)
i

[
g
(
W

(t)
i

)]
=

∞∑
t=0

Pi {θ = t}E(0)
i

[
g
(
W

(0)
i

)]
= E(0)

i

[
g
(
W

(0)
i

)]
= Ei [g (Wi)] ,

where the second equality follows from the bounded convergence, and the third equality from Lemma 7.7. �

Finally, Lemmas 7.1 and 7.8 prove Proposition 7.9 below.

Proposition 7.9. Fix i ∈M and suppose j(i) is unique. Then R
(a)
i (τA, dA)/Ai

Ai↓0−−−→ aj(i)iEi[e−Wi ], where

Wi is the random variable defined in Proposition 7.8. Therefore, a higher approximation for Problem 1 can

be achieved by setting in (54)

σi := aj(i)iEi
[
e−Wi

]
.(70)

8. Numerical examples

We focus on the Bayes risk minimization problem and evaluate the performance of the strategy (τA(c), dA(c))

numerically in the i.i.d. Gaussian case described below. The asymptotic optimality of the strategy ensures

that the strategy is near-optimal when the unit detection delay cost c is small. The numerical example

suggests that it is still near-optimal for mildly higher values of the unit detection delay cost.

8.1. The Gaussian Case. Suppose that the observations Xn = (X
(1)
n , . . . , X

(K)
n ), n ≥ 1 form a sequence

of K-tuple Gaussian random variables. Conditionally on θ and µ, they are mutually independent and have

common means (λ
(1)
0 , . . . , λ

(K)
0 ) before θ and (λ

(1)
µ , . . . , λ

(K)
µ ) at and after θ and common variances (1, . . . , 1)

at all times. The Kullback-Leibler divergence between the distributions probability density functions under

µ = i and µ = j is

q(i, j) =
1

2

K∑
k=1

(
λ

(k)
i − λ

(k)
j

)2

for every i ∈M, j ∈M0 \ {i}.

Because Conditions 5.4 and 5.8 are satisfied, Proposition 5.10 holds with

l(i, j) = min

{
%+

1

2

K∑
k=1

(
λ

(k)
i − λ

(k)
0

)2

,
1

2

K∑
k=1

(
λ

(k)
i − λ

(k)
j

)2
}
, j ∈M \ {i},(71)

and l(i, 0) = %+ 1
2

∑K
k=1

(
λ

(k)
i − λ

(k)
0

)2

for every i ∈M.
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i\j 0 1 2 3
1 0.12540 - 0.0050 0.12540
2 0.15040 0.0050 - 0.12500
3 0.42540 0.18000 0.1250 -

Table 1. The limits l(i, j) of Proposition 5.10 calculated for the numerical example
(arg minj∈M0\{i} l(i, j) values are indicated in boldface).

8.2. Numerical validation of Proposition 5.10. Let us first numerically validate Proposition 5.10. Let

M = 3, K = 1, p0 = 0, p = 0.1, (ν1, ν2, ν3) = (1/3, 1/3, 1/3), and (λ
(1)
0 , λ

(1)
1 , λ

(1)
2 , λ

(1)
3 ) = (0, 0.2, 0.3, 0.8).

The limiting values l(·, ·) in (71) are reported in Table 1.

Figure 2 shows sample realizations of (Λn(µ, j)/n)n≥1 for every j ∈ {0, 1, 2, 3} \ {µ} and (Φ
(µ)
n /n)n≥1

given that (a) µ = 1 and θ = 10, (b) µ = 1 and θ = 1000 and (c) µ = 2 and θ = 10. Note that the figures

are consistent with the limiting values reported in Table 2 as expected from Proposition 5.10. As we know

for sure from Proposition 4.2, the process (Φ
(i)
n /n)n≥1 graphically seems to converge to l(i).
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Figure 2. The realization of Process j: (Λn(µ, j)/n)n≥1 for every j ∈ {0, 1, 2, 3}\{µ} and Process

phi: (Φ
(µ)
n /n)n≥1 given that (a) µ = 1, θ = 10, (b) µ = 1, θ = 1000, and (c) µ = 2, θ = 10.

8.3. The numerical comparison of the exact and asymptotic expressions for the minimum Bayes

risk. We calculate the exact minimum Bayes risk by solving a suitable dynamic programming problem and

its asymptotic expression for the following example of the Bayes-risk minimization problem. We assume

that M = 2, K = 2, p0 = 0, p = 0.01, (ν1, ν2) = (0.1, 0.9), and the mean vectors λ0 = (λ
(1)
0 , λ

(2)
0 ) and

λi = (λ
(1)
i , λ

(2)
i ), i = 1, 2 before and after the change, respectively, satisfy

λ
(1)
1 = λ

(1)
0 + 1.0, λ

(1)
2 = λ

(1)
0 + 1.0,

λ
(2)
1 = λ

(2)
0 + 0.0, λ

(2)
2 = λ

(2)
0 + 0.5.

Table 2 compares the performances of the strategy (τA(c), dA(c)) and the optimal strategy for fixed aji = 1

for every i ∈M and j ∈M0\{i} as the unit detection delay cost c changes. The optimal stopping regions are

found by the value iteration algorithm described by Dayanik et al. [2008]. The Bayes risks of the strategies
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are estimated via Monte Carlo simulation. For accurate approximations, we used (70), and (σi)i∈M are

computed with Monte Carlo methods.

We see that (τA(c), dA(c)) is asymptotically optimal; the ratio of the optimal and approximate Bayes risk

values converges to 1 as c ↓ 0 as listed in the last column. Moreover, the approximate Bayes risk values are

near the minimum Bayes risk value even for large c values, and this is due to the higher-order approximation

as studied in Section 7.

c Minimum Bayes risk R(τA(c), dA(c)) ratio
0.020 0.2896362 0.30860624 1.065496
0.015 0.2422770 0.25750238 1.062843
0.010 0.1869979 0.19718571 1.054481
0.005 0.1203246 0.12367423 1.027838

Table 2. Numerical comparisons of the optimal and approximate (τA(c), dA(c)) Bayes risk values.
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Appendix A. Sufficient Conditions for the r-Quick Convergence

We study sufficient conditions for Condition 4.8. Because Condition 4.8 (i) implies (ii), we focus only on

obtaining a sufficient condition for (i). We fix i ∈ M and assume that Γi 6= ∅ and hence j(i) ∈ Γi; see

Remark 5.11 (iii).

By (42) and (65), for every j(i) ∈ minj∈M\{i} l(i, j),

Φ(i)
n =

n∑
l=1

hij(i)(Xl) + εn(i, j(i))− ηn(i, j(i)), where εn(i, j(i)) = L(i)
n − L(j(i))

n + log νi − log νj(i).

In order to obtain the r-quick convergence, it is sufficient to show under Pi that there exists j(i) ∈
minj∈M\{i} l(i, j) such that

r-quick- lim inf
n↑∞

1

n

n∑
l=1

hij(i)(Xl) ≥ l(i),(72)

r-quick- lim inf
n↑∞

1

n
(−L(j(i))

n ) ≥ 0,(73)

r-quick- lim inf
n↑∞

1

n
(−ηn(i, j(i))) ≥ 0,(74)
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because L
(i)
n is bounded from below by log[p0 + (1 − p0)p]. We see that the random walk term in (72)

converges r-quickly under some mild conditions. Additional conditions are needed to obtain the r-quick

convergence for the slowly-changing terms in (73)-(74).

A.1. Condition for the Random Walk Term. We first split the term into the post- and pre- change

terms; 1
n

∑n
l=θ∨1 hij(i)(Xl) + 1

n

∑n∧(θ−1)
l=1 hij(i)(Xl). We will see that the r-quick convergence of the first and

second terms, respectively, require (75)-(76) in the condition below.

Condition A.1. Fix i ∈M, j(i) ∈ arg minj∈M0\{i} l(i, j) and r ≥ 1,

E(0)
i

∣∣hij(i)(X1)
∣∣r+1

<∞,(75)

E(∞)
[
hij(i)(X1)r−

]
<∞.(76)

In order to give a sufficient condition for the post-change term, we use the following theorem.

Theorem A.2 (Baum and Katz [1963], Theorem 3). Let ξ = (ξn) be a sequence of i.i.d. random variables

defined on a probability space (Ω, E ,P). Then, for every t ≥ 1 and r > 1 such that 1/2 < r/t ≤ 1, the

following three statements are equivalent:

(i) E|ξ1|t <∞ and Eξ1 = µ;

(ii)

∞∑
n=1

nr−2P
{∣∣∣ n∑

l=1

(ξl − µ)
∣∣∣ > nr/tδ

}
<∞, for every δ > 0;

(iii)

∞∑
n=1

nr−2P
{

sup
m≥n

∣∣∣ m∑
l=1

(ξl − µ) /mr/t
∣∣∣ > δ

}
<∞, for every δ > 0.

Lemma A.3. For fixed i ∈ M, j(i) ∈ arg minj∈M0\{i} l(i, j) and r ≥ 1, if (75) holds for the given r, we

have r-quick- lim infn↑∞
1
n

∑n
l=θ∨1 hij(i)(Xl) ≥ l(i) under Pi.

Proof. Fix δ > 0 and let Tδ := inf
{
n ≥ 1 : infm≥n

1
m

∑m
l=θ∨1 hij(Xl) > l(i)− δ

}
. Because Tδ ≤ (Tδ−θ)++θ,

it is sufficient to show that Ei
[
(Tδ − θ)r+

]
<∞.

Fix t ≥ 0 and n ≥ 1,

P(t)
i {Tδ − θ > n} = P(t)

i {Tδ > t+ n} = P(t)
i

{
inf

m≥t+n

( 1

m

m∑
l=t∨1

hij(i)(Xl)
)
≤ l(i)− δ

}
= P(t)

i

{
inf

m≥t+n

[ 1

m

m∑
l=t∨1

(
hij(i)(Xl)− l(i)

)
− t ∨ 1− 1

m
l(i)
]
≤ −δ

}
≤ P(t)

i

{
inf

m≥t+n

[ 1

m

m∑
l=t∨1

(
hij(i)(Xl)− l(i)

) ]
− t

t+ n
l(i) ≤ −δ

}
≤ P(t)

i

{
inf

m≥t+n

[ 1

m

m∑
l=t∨1

(
hij(i)(Xl)− l(i)

) ]
≤ −δ

2

}
+ P(t)

i

{ t

t+ n
l(i) ≥ δ

2

}
≤ P(t)

i

{
inf

m≥t+n

[ 1

m− t ∨ 1 + 1

m∑
l=t∨1

(
hij(i)(Xl)− l(i)

) ]
≤ −δ

2

}
+ 1{ t

t+n l(i)≥
δ
2}

= An(δ/2) + 1{n<2tl(i)/δ−t},(77)
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where for every δ̃ > 0

An(δ̃) := P(t)
i

{
inf

m≥t+n

[ 1

m− t ∨ 1 + 1

m∑
l=t∨1

(
hij(i)(Xl)− l(i)

) ]
≤ −δ̃

}
= P(0)

i

{
inf
m≥n

[ 1

m

m∑
l=1

(
hij(i)(Xl)− l(i)

) ]
≤ −δ̃

}
,

because Xt, Xt+1, ... are conditionally i.i.d. given θ = t. Hence,

E(t)
i

[
(Tδ − θ)r+

]
<∞⇐⇒

∞∑
n=1

nr−1P(t)
i {Tδ − θ > n} <∞⇐=

∞∑
n=1

nr−1An(δ/2) + b(t) <∞(78)

where

∞∑
n=1

nr−11{n≤2tl(i)/δ−t} =

b2tl(i)/δ−tc∑
n=1

nr−1 < b2tl(i)/δ − tcr =: b(t)

with bxc the greatest integer smaller than or equal to any real number x. Now, by Theorem A.2 (iii),

E(0)
i

[∣∣hij(i)(X1)
∣∣r+1

]
<∞ =⇒

∞∑
n=1

nr−1P(0)
i

{
sup
m≥n

∣∣∣ 1

m

m∑
l=1

(
hij(i)(X1)− l(i)

) ∣∣∣ ≥ δ} <∞, ∀δ > 0

=⇒
∞∑
n=1

nr−1An(δ) <∞, ∀δ > 0.

(79)

Because Ei
[
(Tδ − θ)r+

]
= p0E(0)

i

[
(Tδ − θ)r+

]
+
∑∞
t=1(1 − p0)(1 − p)t−1pE(t)

i

[
(Tδ − θ)r+

]
, this is finite by

(78)-(79) and

∞∑
n=1

nr−1An(δ/2) + p0b(1) +

∞∑
t=1

(1− p0)(1− p)t−1pb(t) <∞.

�

We now prove for the pre-change term.

Lemma A.4. For fixed i ∈ M, j(i) ∈ arg minj∈M0\{i} l(i, j) and r ≥ 1, if (76) holds for the given r, we

have r-quick- lim infn↑∞
1
n

∑n∧(θ−1)
l=1 hij(i)(Xl) ≥ 0 under Pi.

Proof. Let Tδ(i, j) := inf{n ≥ 1 : infm≥n
1
m

∑(θ−1)∧m
l=1 hij(i)(Xl) > −δ} for every δ > 0. We have

Ei[(
∑θ−1
l=1 hij(i)(Xl)−)r] =

∑∞
t=2(1 − p0)p(1 − p)t−1E(t)

i [(
∑t−1
l=1 hij(i)(Xl)−)r], and because x 7→ xr is con-

vex on (0,∞), we have E(t)
i [(

∑t−1
l=1 hij(i)(Xl)−)r] = E(∞)[(

∑t−1
l=1 hij(i)(Xl)−)r] ≤ (t − 1)rE(∞)[hij(i)(X1)r−],

and therefore

Ei[(
θ−1∑
l=1

hij(i)(Xl)−)r] ≤ E(∞)[hij(i)(X1)r−]

∞∑
t=2

(1− p0)(1− p)t−1p(t− 1)r <∞.

Now we have, for every n ≥ 1,

Pi {Tδ(i, j) > n} = Pi
{

inf
m≥n

[ 1

m

(θ−1)∧m∑
l=1

hij(i)(Xl)
]
≤ −δ

}
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≤ Pi
{

sup
m≥n

[ 1

m

(θ−1)∧m∑
l=1

hij(i)(Xl)−

]
≥ δ
}
≤ Pi

{ 1

n

θ−1∑
l=1

hij(i)(Xl)− ≥ δ
}

= Pi
{ θ−1∑
l=1

hij(i)(Xl)− ≥ nδ
}
,

and therefore

Ei
[( θ−1∑

l=1

hij(i)(Xl)−

)r]
<∞ =⇒

∞∑
n=1

nr−1Pi
{ θ−1∑
l=1

hij(i)(Xl)− ≥ nδ
}
<∞, ∀δ > 0

=⇒
∞∑
n=1

nr−1Pi {Tδ(i, j) > n} <∞, ∀δ > 0⇐⇒ Ei [(Tδ(i, j))
r
] <∞, ∀δ > 0,

as desired. �

By combining Lemmas A.3-A.4, we have the following.

Lemma A.5. Fix i ∈ M. Under Condition A.1 for some j(i) ∈ arg minj∈M0\{i} l(i, j) and r ≥ 1, we have

r-quick- lim infn↑∞
1
n

∑n
l=1 hij(i)(Xl) ≥ l(i) under Pi.

A.2. Condition for the Slowly-Changing Term. We now focus on the standard case where m = 1 and

obtain sufficient conditions for the 1-quick convergence.

Fix i ∈M and let

f
(p)
j (x) :=

 (1− p)f0(x), j = 0,

fj(x), j 6= 0,

 , x ∈ E,

and we assume γ0(l, j) := E(∞)
[
f

(p)
l (X1)/f

(p)
j (X1)

]
and γi(l, j) := E(0)

i

[
f

(p)
l (X1)/f

(p)
j (X1)

]
exist for every

j ∈M0 \ {i} and l ∈M0 \ {i, j}.
Notice that γi(·, ·) is closely related to the limit l(·, ·) and the Kullback-Leibler divergence q(·, ·) in (35).

Recall that E(0)
i

[
log(f

(p)
l (X1)/f

(p)
j (X1))

]
= l(i, j)− l(i, l) for all j ∈M0 \ {i} and l ∈M0 \ {i, j}. We have

chosen j(i) such that l(i, j) is minimized over j ∈M0 \ {i}, and hence

E(0)
i

[
log

f
(p)
l (X1)

f
(p)
j(i)(X1)

]
< 0,(80)

for every l ∈M0 \ {i, j(i)}.
Similarly to the Kullback-Leibler divergence, γi(·, ·) is another measure of the distance between two den-

sities. We see that if j(i) attains the minimum under this measure as well, we have the 1-quick convergence.

Condition A.6. Suppose Γi 6= ∅ and there exists j(i) ∈ minj∈M0
l(i, j) such that γ0(l, j(i)) < ∞ and

γi(l, j(i)) < 1, for every l ∈M0 \ {i, j(i)}.

Fix j(i) and l ∈ M0 \ {l, j(i)}. By (80), we have expE(0)
i [log(f

(p)
l (X1)/f

(p)
j(i)(X1))] < 1. Although this is

not sufficient because, by Jensen’s inequality, expE(0)
i [log(f

(p)
l (X1)/f

(p)
j(i)(X1))] ≤ E(0)

i [f
(p)
l (X1)/f

(p)
j(i)(X1)] =

γi(l, j(i)), we expect that the difference is small and it is likely that γi(l, j(i)) < 1 holds.

We now prove the convergence result for (73)-(74) given Condition A.6.

Lemma A.7. Given a stochastic process (Gn)n≥1 bounded from below by some constant b ∈ R and r ≥ 1.

If E
[(

supk≥1Gk
)r]

<∞, then we have r-quick- lim infn↑∞ (−Gn)/n ≥ 0.
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Proof. Define Tδ := inf {n ≥ 1 : infm≥n (−Gm)/m > −δ} for every δ > 0. Let b̃ := 0 ∨ (−b) ≥ 0 (and

Gk + b̃ ≥ 0). We have

E
[(

sup
k≥1

Gk

)r]
<∞⇐⇒ E

[(
sup
k≥1

(Gk + b̃)
)r]

<∞⇐⇒
∞∑
n=1

nr−1P
{

sup
k≥1

(Gk + b̃) > nδ
}
<∞, ∀δ > 0.

Moreover, we have P
{

supk≥1(Gk + b̃) > nδ
}
> P

{
supm≥nGm/m > δ

}
= P {infm≥n (−Gm)/m < −δ} =

P {Tδ > n} for all δ > 0, and therefore we have
∑∞
n=1 n

r−1P {Tδ > n} < ∞ ⇐⇒ ET rδ < ∞, for every δ > 0

as desired. �

Lemma A.8. Fix i ∈M and j ∈ Γi. If γ0(0, j) <∞ and γi(0, j) < 1, then 1-quick- lim infn↑∞ (−L(j)
n )/n ≥

0.

Proof. It is sufficient to show by Lemma A.7 that Ei
[
supn≥1 L

(j)
n

]
< ∞. For every t ≥ 0 and n ≥ 1, we

have by Jensen’s inequality

E(t)
i

[
L(j)
n

]
= E(t)

i

[
log
(
p0 + (1− p0)p

n∑
k=1

k−1∏
l=1

((1− p)f0(Xl)/fj(Xl))
)]

≤ log
(
p0 + (1− p0)p

n∑
k=1

k−1∏
l=1

E(t)
i ((1− p)f0(Xl)/fj(Xl))

)

= log
(
p0 + (1− p0)p

n∑
k=1

(k−1)∧(t−1)∏
l=1

γ0(0, j)

k−1∏
l=t∨1

γi(0, j)
)

≤ log
(
p0 +

n∑
k=1

(k−1)∧(t−1)∏
l=1

γ0(0, j)

k−1∏
l=t∨1

γi(0, j)
)
.

Moreover, we have

n∑
k=1

(k−1)∧(t−1)∏
l=1

γ0(0, j)

k−1∏
l=t∨1

γi(0, j) ≤
∞∑
k=1

t−1∏
l=1

(γ0(0, j) ∨ 1)

k−1∏
l=t∨1

γi(0, j)

= (γ0(0, j) ∨ 1)
(t−1)∨0

∞∑
k=1

γi(0, j)
(k−t∨1)∨0 = (γ0(0, j) ∨ 1)

(t−1)∨0 (
(t ∨ 1)− 1 + (1− γi(0, j))−1

)
≤ (γ0(0, j) ∨ 1)

t (
t ∨ 1 + (1− γi(0, j))−1

)
,

and therefore

E(t)
i

[
L(j)
n

]
≤ log

(
p0 + (γ0(0, j) ∨ 1)

t (
t ∨ 1 + (1− γi(0, j))−1

))
≤ log

(
(γ0(0, j) ∨ 1)

t (
p0 + t ∨ 1 + (1− γi(0, j))−1

))
= t log (γ0(0, j) ∨ 1) + log

(
p0 + t ∨ 1 + (1− γi(0, j))−1

)
≤ t log (γ0(0, j) ∨ 1) + log

(
(t ∨ 1)

(
p0 + 1 + (1− γi(0, j))−1

))
= t log (γ0(0, j) ∨ 1) + log(t ∨ 1) + log

(
p0 + 1 + (1− γi(0, j))−1

)
,
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which is independent of n. Thus E(t)
i

[
supn≥1 L

(j)
n

]
≤ t log (γ0(0, j) ∨ 1)+log(t∨1)+log

(
p0 + 1 + (1− γi(0, j))−1

)
.

Finally, we have Ei
[
supn≥1 L

(j)
n

]
≤ (Eθ) log (γ0(0, j) ∨ 1) + E [log(θ ∨ 1)] + log

(
p0 + 1 + (1− γi(0, j))−1

)
,

which is finite by the definition of θ. �

Lemma A.9. Fix i ∈ M. If Condition A.6 holds with some j(i) ∈ minj∈M0
l(i, j), then we have 1-quick-

lim infn↑∞ (−ηn(i, j(i)))/n ≥ 0.

Proof. By assumption, we have γ
(i)
0 := maxj∈M0\{i,j(i)} γ0(j, j(i)) <∞ and γ

(i)
i := maxj∈M0\{i,j(i)} γi(j, j(i)) <

1. By Lemma A.7, it is sufficient to prove Ei
[
supn≥1 ηn(i, j(i))

]
< ∞. Fix n ≥ 1, we have by Jensen’s in-

equality

E(i)
i

[
sup
n≥1

ηn(i, j(i))

]
≤ E(t)

i

[
log
(

1 +
∑

j∈M0\{i,j(i)}

sup
n≥1

(
α(j)
n /α(j(i))

n

))]

≤ log
(

1 +
∑

j∈M0\{i,j(i)}

E(t)
i

[
sup
n≥1

(
α(j)
n /α(j(i))

n

)])
≤ log

(
1 +

∑
j∈M0\{i,j(i)}

∞∑
n=1

E(t)
i

[
α(j)
n /α(j(i))

n

] )

≤ log
(

1 + (M − 1)

∞∑
n=1

max
j∈M0\{i,j(i)}

E(t)
i

[
α(j)
n /α(j(i))

n

] )
.

Let ai := 1
νj(i)(p0+(1−p0)p)

(
(1− p0) ∨

(
maxj∈M\{i,j(i)} νj

))
. We have

E(t)
i

[
α(0)
n /α(j(i))

n

]
≤ 1− p0

νj(i)(p0 + (1− p0)p)

n∏
l=1

E(t)
i

[
(1− p)f0(Xl)/fj(i)(Xl)

]
=

1− p0

νj(i)(p0 + (1− p0)p)

n∧(t−1)∏
l=1

E(t)
i

[
(1− p)f0(Xl)/fj(i)(Xl)

] n∏
l=t∨1

E(t)
i

[
(1− p)f0(Xl)/fj(i)(Xl)

]
≤ ai

(
γ

(i)
0

)((t−1)∧n)∨0 (
γ

(i)
i

)(n+1−t∨1)∨0

≤ ai
(
γ

(i)
0 ∨ 1

)t (
γ

(i)
i

)(n−t)∨0

.

For every j ∈M \ {i, j(i)}, we have

α
(j)
n

α
(j(i))
n

≤ νj expL
(j)
n

νj(i)(p0 + (1− p0)p)

n∏
l=1

fj(Xl)

fj(i)(Xl)

=
νj

νj(i)(p0 + (1− p0)p)

[
p0

n∏
k=1

fj(Xk)

fj(i)(Xk)
+ (1− p0)p

n∑
k=1

(1− p)k−1
k−1∏
l=1

f0(Xl)

fj(i)(Xl)

n∏
m=k

fj(Xm)

fj(i)(Xm)

]

≤ ai
[
p0

n∏
k=1

fj(Xk)

fj(i)(Xk)
+ (1− p0)p

n∑
k=1

(1− p)k−1
k−1∏
l=1

f0(Xl)

fj(i)(Xl)

n∏
m=k

fj(Xm)

fj(i)(Xm)

]
,

and thus its expected value under P(t)
i for fixed t ≥ 0 is bounded from above by

ai

[
p0

n∏
k=1

E(t)
i

[ fj(Xk)

fj(i)(Xk)

]
+ (1− p0)p

n∑
k=1

(1− p)k−1
k−1∏
l=1

E(t)
i

[ f0(Xl)

fj(i)(Xl)

] n∏
m=k

E(t)
i

[ fj(Xm)

fj(i)(Xm)

]]
≤ ai

[
p0

n∏
k=1

E(t)
i

[ fj(Xk)

fj(i)(Xk)

]
+ (1− p0)p

n∑
k=1

(1− p)k−1
n∏
l=1

(
E(t)
i

[ f0(Xl)

fj(i)(Xl)

]
∨ E(t)

i

[ fj(Xl)

fj(i)(Xl)

])]
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≤ ai
[ n∏
l=1

(
E(t)
i

[ f0(Xl)

fj(i)(Xl)

]
∨ E(t)

i

[ fj(Xl)

fj(i)(Xl)

])]
≤ ai

(
γ

(i)
0 ∨ 1

)t (
γ

(i)
i

)(n−t)∨0

.

Combining these bounds together, we have

E(t)
i

[
sup
n≥1

ηn(i, j(i))
]
≤ log

(
1 + (M − 1)ai(γ

(i)
0 ∨ 1)t

∞∑
n=1

(γ
(i)
i )(n−t)∨0

)
≤ log

(
1 + (M − 1)ai(γ

(i)
0 ∨ 1)t

(
(1− γ(i)

i )−1 + t
))

≤ log
(

(γ
(i)
0 ∨ 1)t

(
1 + (M − 1)ai

(
(1− γ(i)

i )−1 + t
)))

= t log(γ
(i)
0 ∨ 1) + log

(
1 + (M − 1)ai

(
(1− γ(i)

i )−1 + t
))

≤ t log(γ
(i)
0 ∨ 1) + log(t ∨ 1) + log

(
1 + (M − 1)ai

(
(1− γ(i)

i )−1 + 1
))

.

Finally,

Ei
[
sup
n≥1

ηn(i, j(i))

]
≤ Eθ log

(
γ

(i)
0 ∨ 1

)
+ E log(θ ∨ 1) + log

(
1 + (M − 1)ai

(
(1− γ(i)

i )−1 + 1
))

,

which is finite by the definition of θ. Hence the proof is complete by Lemma A.7. �

A.3. Condition for the r-Quick Convergence. We now have the following using Lemmas A.5, A.8 and

A.9.

Proposition A.10. Fix i ∈M. Suppose Conditions A.1 and A.6 hold for some j(i) ∈ arg minj∈M0\{i} l(i, j),

then Condition 4.8 holds for the given i and r = 1.

Appendix B. Proofs

B.1. Proof of Lemma 5.5. For the proof of Lemma 5.5 (iii), we will need the next sufficient condition for

uniform integrability, the proof of which can be found in Woodroofe [1982].

Lemma B.1. Let (Xn)n≥1 be a stochastic process and r ≥ 1 be fixed. Then (|Xn|r)n≥1 is uniformly integrable

if
∫∞

0
xr−1 supn≥1 P{|Xn| > x}dx <∞.

Proof of Lemma 5.5. Let ζn := log (
∏n
k=1 ξk) =

∑n
k=1 log ξk. We will firstly prove (i)-(ii) by considering

cases −∞ < λ < 0, 0 ≤ λ <∞, λ =∞, and λ = −∞, separately.

Case 1: −∞ < λ < 0. First, because ηn ≥ (1/n) log eΦ1 = Φ1/n = (log ξ1)/n, we have lim infn↑∞ ηn ≥ 0

a.s. It is, therefore, enough to prove that its limit superior is less than or equal to zero.

By the SLLN and because T is a.s. finite, the exceptional set

Ω0 := {ω ∈ Ω : ζn(ω)/n9 λ or T (ω) =∞}(81)

has zero measure. Fix ω ∈ Ω \ Ω0 and choose sufficiently small ε > 0 such that λ + ε < 0. Then we can

choose Nε(ω) ≥ T (ω) such that, for every k ≥ Nε(ω),

ζk(ω)− ζT (ω)−1(ω)

k − (T (ω)− 1)
< λ+ ε < 0.
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For every n ≥ Nε(ω), we have

eψn(ω) = c+

n∑
k=1

eζk(ω) = c+

Nε(ω)−1∑
k=1

eζk(ω) +

n∑
k=Nε(ω)

eζk(ω).(82)

Because λ+ ε < 0,

n∑
k=Nε(ω)

eζk(ω) = eζT (ω)−1(ω)
n∑

k=Nε(ω)

eζk(ω)−ζT (ω)−1(ω) ≤ eζT (ω)−1(ω)
n∑

k=Nε(ω)

e(k−T (ω)+1)(λ+ε)

= eζT (ω)−1(ω)+(−T (ω)+1)(λ+ε)
n∑

k=Nε(ω)

ek(λ+ε) ≤ eζT (ω)−1(ω)+(−T (ω)+1)(λ+ε)
∞∑
k=0

ek(λ+ε)

which equals eζT (ω)−1(ω)+(−T (ω)+1)(λ+ε)/(1− eλ+ε) and hence (82) is bounded from above by

B(ω) := c+

Nε(ω)−1∑
k=1

eζk(ω) +
eζT (ω)−1(ω)+(−T (ω)+1)(λ+ε)

1− eλ+ε
<∞,

independently of n. Therefore, lim supn↑∞ ηn(ω) = lim supn↑∞(ψn(ω)/n) ≤ lim supn↑∞(logB(ω)/n) = 0, as

desired. Because P (Ω \ Ω0) = 1, we have lim supn↑∞ ηn ≤ 0 a.s. Finally, because ψn(ω) ≤ logB(ω) for every

n ≥ Nε(ω) for a.e. ω and because ψn is increasing in n, ψn converges to a finite limit a.s.

Case 2: 0 ≤ λ <∞. First note that, the SLLN and the finiteness of T imply

ηn ≥
1

n
log(ξ1 · · · ξn) =

1

n

T−1∑
k=1

log ξk +
n− T + 1

n
· 1

n− T + 1

n∑
k=T

log ξk
a.s.−−−→
n↑∞

λ;

therefore, lim infn↑∞ ηn ≥ λ a.s. It is now sufficient to show that lim supn↑∞ ηn − λ ≤ 0.

Fix any realization ω ∈ Ω \ Ω0 and ε > 0, where Ω0 is defined in (81). Let Nε(ω) ≥ T (ω) be such that

k ≥ Nε(ω) =⇒
ζk(ω)− ζT (ω)−1(ω)

k − (T (ω)− 1)
< λ+ ε.(83)

Then for every n ≥ Nε(ω),

ηn(ω)− λ =
1

n
log
(
c+

n∑
k=1

eζk(ω)
)
− λ

=
1

n
log
(
ce−nλ +

Nε(ω)−1∑
k=1

eζk(ω)−nλ +

n∑
k=Nε(ω)

eζk(ω)−nλ
)

=
1

n
log
(
ce−nλ +

Nε(ω)−1∑
k=1

eζk(ω)−nλ + eζT (ω)−1(ω)
n∑

k=Nε(ω)

eζk(ω)−ζT (ω)−1(ω)−nλ
)

<
1

n
log
(
ce−nλ +

Nε(ω)−1∑
k=1

eζk(ω)−nλ + eζT (ω)−1(ω)+(−T (ω)+1)(λ+ε) e
ε(n+1)

eε − 1

)
,

where the last inequality holds because by (83)

n∑
k=Nε(ω)

eζk(ω)−ζT (ω)−1(ω)−nλ <

n∑
k=Nε(ω)

e(k−T (ω)+1)(λ+ε)−nλ = e(−T (ω)+1)(λ+ε)
n∑

k=Nε(ω)

ek(λ+ε)−nλ
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≤ e(−T (ω)+1)(λ+ε)
n∑

k=Nε(ω)

ek(λ+ε)−kλ ≤ e(−T (ω)+1)(λ+ε)
n∑
k=0

ekε < e(−T (ω)+1)(λ+ε) e
ε(n+1)

eε − 1
.

Moreover, for n ≥ τ̃ε(ω) := Nε(ω) ∨ [log(c+
∑Nε(ω)−1
k=1 eζk(ω))/λ], we have ce−nλ +

∑Nε(ω)−1
k=1 eζk(ω)−nλ ≤ 1;

thus, letting A(ω) := ζT (ω)−1(ω) + (−T (ω) + 1)(λ+ ε) gives

ηn(ω)− λ < 1

n
log
(

1 + eA(ω) e
ε(n+1)

eε − 1

)
=

1

n
log
(
eA(ω)+ε(n+1) 1

eε − 1

(
1 +

eε − 1

eA(ω)+ε(n+1)

))
=

1

n

[
A(ω) + ε(n+ 1)− log(eε − 1) + log

(
1 +

eε − 1

eA(ω)+ε(n+1)

)]
n↑∞−−−→ ε.

Because ε > 0 is arbitrary and P (Ω \ Ω0) = 1, we have lim supn↑∞ ηn − λ ≤ 0, a.s.

Case 3: λ = −∞. For m ∈ (0, 1), n ≥ 1, define ξ
(m)
n := m ∨ ξn ≥ m. Because −∞ = E0 [log ξ1] =

E0 [(log ξ1)+]−E0 [(log ξ1)−], we have E0 [(log ξ1)+] <∞ and E0 [(log ξ1)−] =∞. Consequently, E0[(log ξ
(m)
1 )+] =

E0[(logm ∨ log ξ1)+] = E0[(log ξ1)+] <∞, and

E0

[
(log ξ

(m)
1 )−

]
= E0 [(logm ∨ log ξ1)−] = E0

[
(logm)− ∧ (log ξ1)−

]
≤ (logm)− <∞.

Hence, λ(m) := E0

[
log ξ

(m)
1

]
is well-defined and

λ(m) = E0

[
(log ξ

(m)
1 )+

]
− E0

[
(log ξ

(m)
1 )−

]
= E0 [(log ξ1)+]− E0

[
(log ξ

(m)
1 )−

]
(84)

for every m ∈ (0, 1). Because 0 ≤ (log ξ
(m)
1 )− = (logm)− ∧ (log ξ1)− ↑ (log ξ1)− as m ↓ 0, the monotone

convergence theorem implies that limm↓0 E0

[
(log ξ

(m)
1 )−

]
= E0 [(log ξ1)−] = ∞. Therefore, there exists

m0 ∈ (0, 1) such that for every m ≥ m0, E0

[
(log ξ

(m)
1 )−

]
> E0 [(log ξ1)+], and λ(m) ∈ (−∞, 0) by (84). Now

define

ψ(m)
n := log

(
c+ ξ

(m)
1 + ξ

(m)
1 ξ

(m)
2 + · · ·+ ξ

(m)
1 · · · ξ(m)

n

)
and η(m)

n :=
1

n
ψ(m)
n

for every n ≥ 1 and m ∈ (0, 1). By Case 1, limn↑∞ ψ
(m)
n <∞ and limn↑∞ η

(m)
n = 0 a.s. for every m ≥ m0.

Because n 7→ ψn is increasing, limn↑∞ ψn exists, and since log c ≤ ψn ≤ ψ
(m0)
n for every n ≥ 0 (note

ξn ≤ ξ(m)
n for every n ≥ 0), we have log c ≤ limn↑∞ ψn ≤ limn↑∞ ψ

(m0)
n . Therefore, limn↑∞ ψn is also a finite

random variable and ηn = ψn/n
n↑∞−−−→ 0 a.s.

Case 4: λ = ∞. For every M > 1 and n ≥ 1, define ξ
(M)
n := M ∧ ξn ≤ M . Because ∞ = E0 [log ξ1] =

E0 [(log ξ1)+] − E0 [(log ξ1)−], we have E0 [(log ξ1)+] = ∞ and E0 [(log ξ1)−] < ∞. Then E0[(log ξ
(M)
1 )−] =

E0[(logM ∧ log ξ1)−] = E0[(log ξ1)−] <∞, and

E0

[
(log ξ

(M)
1 )+

]
= E0 [(logM ∧ log ξ1)+] = E0

[
(logM)+ ∧ (log ξ1)+

]
= E0 [(logM) ∧ (log ξ1)+] ≤ logM <∞.

Hence, λ(M) := E0

[
log ξ

(M)
1

]
is well-defined and

λ(M) = E0

[
(log ξ

(M)
1 )+

]
− E0

[
(log ξ

(M)
1 )−

]
= E0

[
(log ξ

(M)
1 )+

]
− E0 [(log ξ1)−](85)

for every M ≥ 1. Because 0 ≤ (log ξ
(M)
1 )+ = (logM) ∧ (log ξ1)+ ↑ (log ξ1)+ as M ↑ ∞, the monotone

convergence theorem implies limM↑∞ E0[(log ξ
(M)
1 )+] = E0[(log ξ1)+] =∞.
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Therefore, there exists M0 > 1 such that for every M ≥M0, E0[(log ξ
(M)
1 )+] > E0[(log ξ1)−] and therefore,

λ(M) ∈ (0,∞) by (85). Now, define

ψ(M)
n := log

(
c+ ξ

(M)
1 + ξ

(M)
1 ξ

(M)
2 + · · ·+ ξ

(M)
1 · · · ξ(M)

n

)
and η(M)

n :=
1

n
ψ(M)
n

for every n ≥ 1 and M > 1. By Case 2, limn↑∞ η
(M)
n = λ(M) P-a.s for M ≥M0. Because ξn ≥M∧ξn = ξ

(M)
n ,

we have ψn ≥ ψ(M)
n and ηn ≥ η(M)

n . Therefore, lim infn↑∞ ηn ≥ limn↑∞ η
(M)
n = λ(M) for every M ≥M0.

Finally, lim infn↑∞ ηn ≥ limM↑∞ λ(M) equals by (85)

lim
M↑∞

(
E0

[
(log ξ

(M)
1 )+

]
− E0

[
(log ξ

(M)
1 )−

])
= E0 [(log ξ1)+]− E0 [(log ξ1)−] = E0 [log ξ1] = λ =∞,

by monotone convergence, which implies limn↑∞ ηn = λ = λ+. This completes the proof of (i)-(ii).

We now prove (iii). Fix r ≥ 1. We will show that∫ ∞
0

xr−1 sup
n≥1

P{|ηn|r > x}dx =

∫ ∞
0

xr−1 sup
n≥1

P{|ψn| > nx1/r}dx <∞,

which implies the uniform integrability of (|ηn|r)n≥1 by Lemma B.1. Note supn≥1 P{|ψn| > nx1/r} ≤
supn≥1 P{ψn < −nx1/r}+ supn≥1 P{ψn > nx1/r}. Because ψn ≥ log c, we have P{ψn < −nx1/r} ≤ P{ψn <
−x1/r} = 0 for every x ≥ | log c|r and n ≥ 1, and hence∫ ∞

0

xr−1 sup
n≥1

P{ψn < −nx1/r}dx ≤
∫ | log c|r

0

xr−1dx <∞.

On the other hand, because ξ1, ξ2, . . . are conditionally independent given T , and E[ξk | T ] = α1{k≤T} +

β1{k≥T} ≤ max{α, β} =: γ <∞, Markov inequality gives

P{ψn > nx1/r} = P
{
c+

n∑
l=1

l∏
k=1

ξk > enx
1/r
}
≤ e−nx

1/r

E
[
c+

n∑
l=1

l∏
k=1

ξk

]

= e−nx
1/r
(
c+

n∑
l=1

E
[
E
( l∏
k=1

ξk

∣∣∣T)]) = e−nx
1/r
(
c+

n∑
l=1

E
[ l∏
k=1

E
(
ξk

∣∣∣T)])
≤ e−nx

1/r
(
c+

n∑
l=1

γl
)
≤ e−nx

1/r
(
c+

n∑
l=0

(1 + γ)l
)

= e−nx
1/r
(
c+

(1 + γ)n+1 − 1

γ

)
≤ e−nx

1/r
(
c+

1 + γ

γ
(1 + γ)n

)
≤ e−nx

1/r
(
c+

1 + γ

γ

)
(1 + γ)n

≤ e−n(x1/r−γ)
(
c+

1 + γ

γ

)
≤ e−(x1/r−γ)

(
c+

1 + γ

γ

)
for every x ≥ γr and n ≥ 1.

Therefore, ∫ ∞
0

xr−1 sup
n≥1

P{ψn > nx1/r}dx ≤
∫ γr

0

xr−1dx+
(
c+

1 + γ

γ

)∫ ∞
γr

xr−1e−(x1/r−γ)dx

=
1

r
γr

2

+
(
c+

1 + γ

γ

)
reγ

∫ ∞
γ

yr
2−1e−ydy <∞,
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which completes the proofs of (iii). Finally, for the proof of (iv), note first that

Φn =
1

n

n∑
k=1

log ξk and |Φn|r ≤
( 1

n

n∑
k=1

| log ξk|
)r
≤ 1

n

n∑
k=1

| log ξk|r

because r ≥ 1 and x 7→ xr is convex on x ∈ R+. Since for every k ≥ 1 we have E(| log ξk|r | T ) ≤
max{E∞[| log ξ1|r],E0[| log ξ1|r]}, we also get

E|Φn|r ≤ E
[ 1

n

n∑
k=1

| log ξk|r
]

=
1

n

n∑
k=1

E [E (| log ξk|r | T )] ≤ max{E∞[| log ξ1|r],E0[| log ξ1|r]} <∞

for every n ≥ 1, and supn≥1 E|Φn|r < ∞. Moreover, for every ε > 0, there exists some δ > 0 such that

max{P∞(A),P0(A)} < δ implies that max {E∞ [| log ξ1|r1A] ,E0 [| log ξ1|r1A]} < ε, and

E[|Φn|r1A] ≤ 1

n

n∑
k=1

E[| log ξk|r1A] ≤ 1

n

n∑
k=1

E[E(| log ξk|r1A | T )] ≤ max {E∞ [| log ξ1|r1A] ,E0 [| log ξ1|r1A]} < ε

for every n ≥ 1, which implies, together with the boundedness of (E|Φn|r)n≥1, that (|Φn|r)n≥1 is uniformly

integrable. This completes the proof of (iv) and the lemma. �

B.2. Proof of Lemma 6.1. The proof of Lemma 6.1 requires the following three lemmas.

Lemma B.2. For every i ∈M, j ∈M0 \ {i}, L > 0, c > 1, we have

Pi {τ − θ > L} ≥ 1−R(1)
i (τ, d)− ecLl(i,j)

νi
Rji(τ, d)− Pi

{
sup

n≤θ+L
Λn(i, j) > cLl(i, j)

}
.

Proof. By Proposition 2.4, Rji(τ, d) = νiEi[1{d=i, θ≤τ<∞}e
−Λτ (i,j)] = E[1{µ=i, θ≤τ<∞, d=i}e

−Λτ (i,j)], and

Rji(τ, d) ≥ E
[
1{µ=i, θ≤τ≤θ+L, d=i, Λτ (i,j)<B}e

−Λτ (i,j)
]

≥ e−BP {µ = i, θ ≤ τ ≤ θ + L, d = i,Λτ (i, j) < B}

≥ e−B
(
P
{
µ = i, θ ≤ τ <∞, d = i

}
− P

{
µ = i, θ + L < τ <∞

}
− P

{
µ = i, sup

n≤θ+L
Λn(i, j) > B

})
,

for every fixed B > 0. Hence, we have P{µ = i, τ − θ > L} ≥ P{µ = i, θ + L < τ <∞} ≥

P {µ = i, θ ≤ τ <∞, d = i} − eBRji(τ, d)− P
{
µ = i, sup

n≤θ+L
Λn(i, j) > B

}
= νi − νiR(1)

i (τ, d)− eBRji(τ, d)− P
{
µ = i, sup

n≤θ+L
Λn(i, j) > B

}
.

Dividing by νi = P {µ = i} gives Pi{τ − θ > L} ≥ 1−R(1)
i (τ, d)− eB

νi
Rji(τ, d)− Pi{supn≤θ+L Λn(i, j) > B}.

The proof is complete by setting B = cLl(i, j). �

Lemma B.3. For every i ∈M, j ∈M0 \ {i}, L > 0, and c > 1, we have

inf
(τ,d)∈∆(R)

Pi {τ − θ > L} ≥ 1−
∑
j∈M0\{i}Rji

νi
− ecLl(i,j)

νi
Rji − Pi

{
sup

n≤θ+L
Λn(i, j) > cLl(i, j)

}
.
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Proof. By Lemma B.2, we have inf(τ,d)∈∆(R) Pi{τ − θ > L} ≥

1− sup
(τ,d)∈∆(R)

R
(1)
i (τ, d)− ecLl(i,j)

νi
sup

(τ,d)∈∆(R)

Rji(τ, d)− Pi
{

sup
n≤θ+L

Λn(i, j) > cLl(i, j)
}
.

Then the lemma holds because (τ, d) ∈ ∆(R) implies that R
(1)
i (τ, d) ≤

∑
j∈M0\{i}

Rji

νi
and Rji(τ, d) ≤ Rji. �

Lemma B.4. For every i ∈M and c > 1, we have Pi{supn≤θ+L Λn(i, j(i)) > cLl(i)} L↑∞−−−→ 0.

Proof. Because Λn(i, j(i))/n converges Pi-a.s. to l(i) as n ↑ ∞ by Assumption 4.1, there exists Pi-a.s. finite

random variable Kc such that supn>Kc
Λn(i,j(i))+

n = supn>Kc
Λn(i,j(i))

n < (1+(c−1)/2)l(i), Pi-a.s. Moreover,

Pi
{

sup
n≤θ+L

Λn(i, j(i)) > cLl(i)
}
≤ Pi

{
sup

n≤θ+L
Λn(i, j(i))+ > cLl(i)

}
≤ Pi

{
sup
n≤Kc

Λn(i, j(i))+ + sup
Kc<n≤θ+L

n
Λn(i, j(i))+

n
> cLl(i)

}
≤ Pi

{
sup
n≤Kc

Λn(i, j(i))+ + (θ + L) sup
Kc<n≤θ+L

Λn(i, j(i))+

n
> cLl(i)

}
= Pi

{ supn≤Kc Λn(i, j(i))+

L
+
θ + L

L
sup

Kc<n≤θ+L

Λn(i, j(i))+

n
> cl(i)

}
≤ Pi

{ supn≤Kc Λn(i, j(i))+

L
+
θ + L

L
sup
n>Kc

Λn(i, j(i))+

n
> cl(i)

}
.

(86)

Because both Kc and θ are Pi-a.s. finite, we have

lim
L↑∞

[ supn≤Kc Λn(i, j(i))+

L
+
θ + L

L
sup
n>Kc

Λn(i, j(i))+

n

]
= sup
n>Kc

Λn(i, j(i))+

n
<
(

1 +
c− 1

2

)
l(i) < cl(i), Pi-a.s.

by Remark 2.2. Thus, 1{(supn≤Kc Λn(i,j(i))+)/L+ θ+L
L supn>Kc (Λn(i,j(i))+)/n>cl(i)}

Pi-a.s.−−−−→
L↑∞

0, implying

Pi
{ supn≤Kc Λn(i, j(i))+

L
+
θ + L

L
sup
n>Kc

Λn(i, j(i))+

n
> cl(i)

}
L↑∞−−−→ 0,

and the claim holds by (86). �

Lemma B.5. Fix 0 < δ < 1, i ∈M and j(i). We have

lim inf
Ri↓0

inf
(τ,d)∈∆(R)

Pi
{
τ − θ ≥ δ

| log
(
Rj(i)i/νi

)
|

l(i)

}
≥ 1.

Proof. Fix 0 < Rj(i)i < νi. Then − log(Rj(i)i/νi) = | log(Rj(i)i/νi)|. If in Lemma B.3 we set j = j(i),

L := L(Rj(i)i) = δ| log
(
Rj(i)i/νi

)
|/l(i), and choose c > 1 such that 0 < cδ < 1, then we have

inf
(τ,d)∈∆(R)

Pi
{
τ − θ ≥ δ

| log(Rj(i)i/νi)|
l(i)

}
≥ 1−

∑
j∈M0\{i}Rj(i)i

νi
−
(Rj(i)i

νi

)1−cδ
− Pi

{
sup

n≤θ+L
Λn(i, j(i)) > cLl(i)

}
= 1− o(1)

as Ri ↓ 0, because 0 < 1− cδ < 1 and by Lemma B.4 noting that Ri ↓ 0 implies L ↑ ∞. �

Proof of Lemma 6.1. Fix a set of positive constants R, 0 < δ < 1 and (τ, d) ∈ ∆. By Markov inequality,
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Ei
[ D

(m)
i (τ)(

| log
(
Rj(i)i/νi

)
|/l(i)

)m ] ≥ δPi{ ((τ − θ)+)m(
| log

(
Rj(i)i/νi

)
|/l(i)

)m ≥ δ}
= δPi

{
τ − θ ≥ δ 1

m
| log

(
Rj(i)i/νi

)
|

l(i)

}
≥ δ inf

(τ̃ ,d̃)∈∆(R)
Pi
{
τ̃ − θ ≥ δ 1

m
| log

(
Rj(i)i/νi

)
|

l(i)

}
.

Hence, we have

inf
(τ̃ ,d̃)∈∆(R)

Ei
[ D

(m)
i (τ̃)(

| log
(
Rj(i)i/νi

)
|/l(i)

)m ] ≥ δ inf
(τ̃ ,d̃)∈∆(R)

Pi
{
τ̃ − θ ≥ δ 1

m
| log

(
Rj(i)i/νi

)
|

l(i)

}
.

By taking limits on both sides,

lim inf
Ri↓0

inf
(τ̃ ,d̃)∈∆(R)

Ei
[ D

(m)
i (τ̃)(

| log
(
Rj(i)i/νi

)
|/l(i)

)m ] ≥ δ lim inf
Ri↓0

inf
(τ̃ ,d̃)∈∆(R)

Pi
{
τ̃ − θ ≥ δ 1

m
| log

(
Rj(i)i/νi

)
|

l(i)

}
,

which is greater than or equal to δ by Lemma B.5. The claim is proved because 0 < δ < 1 is arbitrary. �

B.3. Proof of Proposition 6.2. We prove (57) by contradiction. Assume on the contrary that

lim inf
c↓0

inf(τ,d)∈∆R
(c,a,m)
i (τ, d)

g
(c)
i (Ai(c))

< 1,

implying that there exists a monotonically decreasing subsequence (cn)n≥1 ↓ 0 and their corresponding

strategies (τ∗cn , d
∗
cn) such that

lim
n↑∞

R
(cn,a,m)
i (τ∗cn , d

∗
cn)

g
(cn)
i (Ai(cn))

< 1.(87)

By (56), inf(τ,d)∈∆R
(cn,a,m)
i (τ, d) ≤ R

(cn,a,m)
i (τA(cn), dA(cn))

n↑∞−−−→ 0. Therefore, ‖R(τ∗cn , d
∗
cn)‖ n↑∞−−−→ 0,

where R(τ∗cn , d
∗
cn) =

(
Rji(τ

∗
cn , d

∗
cn)
)
i∈M,j∈M0\{i}

are the false alarm and misdiagnosis probabilities corre-

sponding to the strategy (τ∗cn , d
∗
cn). Consequently, Lemma 6.1 applies and we have

D
(m)
i (τ∗cn) ≥ inf

(τ,d)∈∆(R(τ∗cn ,d
∗
cn

))
D

(m)
i (τ) ≥

(
| log

(
Rj(i)i(τ

∗
cn , d

∗
cn)/νi

)
|/l(i)

)m
(1 + o(1)),

where o(1) ↓ 0 as n ↑ ∞. Finally, R
(cn,a,m)
i (τ∗cn , d

∗
cn) ≥ cnD(m)

i (τ∗cn) + aj(i)iRj(i)i(τ
∗
cn , d

∗
cn)/νi ≥

cn
(∣∣log(Rj(i)i(τ

∗
cn , d

∗
cn)/νi)

∣∣ /l(i))m (1 + o(1)) + aj(i)iRj(i)i(τ
∗
cn , d

∗
cn)/νi

= g
(cn)
i (log

(
Rj(i)i(τ

∗
cn , d

∗
cn)/νi

)
)(1 + o(1)) ≥ g(cn)

i (Ai(cn))(1 + o(1)),

where the last inequality follows from (55). However, this contradicts with (87), and the proof is completed.
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