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Abstract 
 

This paper proposes a new method for estimating continuous-time stochastic volatility 

(SV) models for the S&P 500 stock index process using intraday high-frequency 

observations of both the S&P 500 index and the Chicago Board of Exchange (CBOE) 

implied (or expected) volatility index (VIX).  Intraday high-frequency observations 

data have become readily available for an increasing number of financial assets and 

their derivatives in recent years, but it is well known that attempts to estimate the 

parameters of popular continuous-time models can lead to nonsensical estimates due to 

severe intraday seasonality. A primary purpose of the paper is to estimate the leverage 

parameter, ρ , that is, the correlation between the two Brownian motions driving the 

diffusive components of the price process and its spot variance process, respectively. 

We show that, under the special case of Heston’s (1993) square-root SV model without 

measurement errors, the “realized leverage”, or the realized covariation of the price and 

VIX processes divided by the product of the realized volatilities of the two processes, 

converges to ρ  in probability as the time intervals between observations shrink to zero, 

even if the length of the whole sample period is fixed.  Finite sample simulation results 

show that the proposed estimator delivers accurate estimates of the leverage parameter, 

unlike existing methods.  

 
Keywords: Continuous time, high frequency data, stochastic volatility, S&P 500, 
implied volatility, VIX.  
 
JEL Classifications: G13, G17, G32.  
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1. Introduction 
 

The negative correlation between return and its volatility is one of the most salient 

empirical features of time series of equity price observations.  Many variants of the 

continuous-time and discrete-time stochastic volatility (SV) and GARCH-type volatility 

models incorporating this feature in the dynamic equation for volatility have been 

proposed in the literature.  This correlation in the underlying asset price or index 

affects the theoretical prices of options in such a way as to fit and explain partially the 

empirically observed “skew” patterns in the Black-Scholes options implied volatilities 

plotted against the strike prices.  Thus, such a correlation has attracted great attention 

in the asset pricing and financial econometrics literature.   

 

Statistical estimation of this correlation for a particular type of continuous-time SV 

models is a primary focus of this paper.  The negative price-volatility correlation is 

customarily referred to as “leverage” after Black’s (1976) explanation based on the 

increased debt-equity ratio of a firm following its share price decrease raising its share 

price volatility. [For economic explanations in the equity case, see Bollerslev et al. 

(2006) and the references therein.]  The leverage concept does not apply to non-equity 

cases.  In this paper, we also use the term “leverage” interchangeably with correlation 

between return and its volatility, without restriction regarding its sign.  

 

For derivatives analysis, one-factor mean-reverting diffusion processes often augmented 

by jump components are commonly used as continuous-time SV models, among which 

the affine-drift square-root SV model of Heston (1993) enjoys popularity due to its 

analytical tractability.  SV diffusion models incorporate leverage by allowing the two 

Brownian motions driving the price process and its volatility process, respectively, to be 

correlated.  Even if the chosen parametric model is correctly specified, it requires an 

accurate estimate of this correlation ρ , or the “leverage” parameter, together with the 

other parameters, for the model to be useful in derivatives pricing and hedging.  

 

In this paper, we propose a new method for estimating this leverage parameter for a 

class of continuous-time SV models using high frequency intraday observations of the 
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price and its “model-free” options implied volatility jointly.  Essentially, we propose to 

use the “realized leverage,” or the realized correlation between the price and the 

model-free implied variance, for improving ρ  estimation.  The realized correlation 

between two series is the realized covariation divided by the product of the two realized 

volatilities.   

 

We note that, under the Heston SV model without measurement errors, the realized 

leverage converges to ρ  in probability as the time intervals between observations 

shrink to zero, even if the length of the whole sample period is fixed.  The benefit of 

using the high frequency implied volatility data jointly with the S&P 500 index data is 

clear from this example.  Although ρ  cannot be backed out in this way for models 

other than the Heston SV model, using high frequency observations of both indices is 

likely to produce superior parameter estimates.  In fact, our simulation experiments 

indicate that the realized leverage is a very accurate estimator for ρ , even under the 

more general affine-drift constant-elasticity-of-variance (CEV) SV model, for which the 

realized leverage is not a consistent estimator for ρ.   

 

Intraday high frequency data have become readily available for an increasing number of 

financial assets and their derivatives in recent years.  However, it is well known that 

attempts to estimate popular continuous-time models that are intended to approximate 

financial processes at daily or lower frequencies, directly using high-frequency returns, 

say five-minute returns, lead to nonsensical parameter estimates due to intraday 

seasonality and various microstructure effects.  For directly modeling returns at short 

time intervals for one hour or less, simple jump diffusion models are clearly not an 

accurate approximation, so that it is necessary to use fundamentally different 

approaches, such as the one pursued by Rydberg and Shephard (2003).  However, such 

approaches, while important in empirically understanding microstructure phenomena, 

do not easily lend themselves to derivatives analysis.   

 

Various authors have sought to extract information contained in high frequency intraday 

data for parameter estimation and jump identification, while retaining simple jump 
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diffusion models.  For example, Bollerslev and Zhou (2002), hereafter referred to as 

BZ, proposed a GMM estimator for the Heston model and its several extensions using 

moment conditions based on conditional moments of the daily realized variance, which 

is a daily aggregate of short intraday squared returns.  For estimating ρ,  the BZ 

estimator relies on the cross moment of the daily closing price and the daily realized 

variance.   

 

The results of our finite sample simulation experiments using the Heston model indicate 

that their GMM estimator for ρ  is severely biased toward zero.  Corradi and Distaso 

(2006) proposed to use unconditional moments and autocovariances of the realized 

variance and related realized measures for a similar GMM estimation procedure, but 

they did not consider the estimation of ρ .  These two studies used only the high 

frequency observations of the price process.  Garcia et al. (2011), hereafter referred to 

as GLPR, used daily realized measures and daily model-dependent implied volatility 

jointly to construct moments for GMM estimation of the Heston model.  As is 

considered in this paper, GLPR focused primarily on the estimation of ρ , but they did 

not use high frequency intraday implied volatility data.  

 

The CBOE’s S&P 500 implied (or expected) volatility index (VIX) is designed to 

measure the volatility of the S&P 500 index without relying on a particular option 

pricing model, such as the Black-Scholes or the Heston model.  Many authors have 

attempted to exploit information in VIX in estimating models for the S&P 500 index.  

Furthermore, under the assumption that the S&P 500 index follows an affine-drift SV 

process (possibly with certain types of jumps), VIX is an affine transformation of its 

spot variance.  Based on this observation, Duan and Yeh (2010) proposed to estimate a 

discretized version of the affine-drift CEV SV model for the S&P 500 index using daily 

observations of both the S&P 500 index and VIX.  However, they did not use high 

frequency intraday data.  Bakshi et al. (2006) and Dotsis et al. (2007), among others, 

take the VIX process as the object of direct interest rather than treating it as an 

instrument to estimate the underlying volatility process, and used daily VIX 

observations to estimate the continuous-time SV model for VIX.  However, they did 
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not use high frequency intraday data.  

 

Applicability of the proposed ρ  estimator is not limited to the S&P 500 index.  If 

there exists a liquid options market for the underlying process of our interest, with a 

wide spectrum of strike prices, and the intraday high frequency data of their prices are 

available, we may calculate the “model-free” implied volatility values at a high enough 

frequency for the application of our proposed estimator.  For many financial series, the 

implied volatility calculation step is conveniently done by exchanges and other 

institutions.  On the heels of the success of VIX, the universe of “model-free” implied 

volatility indices, as well as exchange-traded options and futures on these volatility 

indices, has been expanding rapidly in recent years.   

 

The CBOE now calculates and disseminates volatility-related indices for a variety of 

financial market indices, and currency and commodities ETFs, including the CBOE 

NASDAQ-100 Volatility Index, CBOE EuroCurrency Volatility Index, CBOE Crude 

Oil Volatility Index, CBOE Gold ETF Volatility Index.  The CBOE and the Chicago 

Mercantile Exchange (CME) Group work together to provide the CBOE/NYMEX 

Crude Oil (WTI) Volatility Index and CBOE/COMEX Gold Volatility Index, applying 

the CBOE VIX methodology to the prices of options on crude oil and gold futures.  

They also intend to provide the CBOE/CBOT Soybean Volatility Index and Corn 

Volatility Index.  The Deutsche Börse provides the VDAX-NEW index for the DAX, 

and Osaka University, Japan, provides the VXJ and CSFI-VXJ for the Nikkei 225 index 

(see Fukasawa et al. (2010) for the latter indices).  Various institutions calculate and 

update “model-free” implied volatility indices for other indices, although the updating 

frequency is not always high enough for our purpose.  

 

Another contribution of this paper is a proper adjustment of the moment conditions to 

reflect the fact that daily realized measures are calculated only for the trading hours that 

do not cover a full day.  In estimating the Heston model for share prices of individual 

stocks or the S&P 500 index, Corradi and Distaso (2006) and GLPR treat the six and a 

half hours (9:30 am - 4:00 pm) for which NYSE is open as a full day as if overnight 
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hours were non-existent.  Their closed-form moment conditions for the Heston SV 

case clearly need to be modified, considering the overnight market closure (nearly three 

quarters of a day).  Otherwise, the estimator will be biased.  We corroborate this 

claim by first driving the modified moment conditions allowing for overnight market 

closure, and then performing Monte Carlo simulation using the BZ moment conditions.    

 

The plan of the remainder of the paper is as follows. Section 2 develops a leverage 

estimator using realized measures of price and volatility indexes, Section 3 presents 

some finite sample simulation results, Section 4 analyzes the empirical results using 

intraday high frequency S&P 500 and VIX, and Section 5 gives some concluding 

remarks.  

 

2. Estimation of leverage and other parameters using realized measures 

of both the price and the implied volatility index 

 

Consider the following class of affine-drift SV diffusion processes: 

 

 t t tdp V dB= ,  (1) 

 ( ) ( )1 221t t tdB dW dWρ ρ= + − ,  (2) 

 ( ) ( ) ( )1
t t t t tdV V dt p V t dWκ θ σ= − + , , ,  (3) 

 

where tp  is the log price process, ( ) ( )1 2
t tW W,  are Brownian motions independent of 

each other, and tV  is called the spot variance process.  The parameters κ  and θ  

determine, respectively, the speed of variance mean reversion and the average level of 

the spot variance. As ( )1
t tdB dW dtρ= ,  ρ  is the so-called leverage parameter.  When 

the diffusion coefficient ( )t tp V tσ , ,  of the variance process (3) is of the form tV γσ , it 

is called the affine-drift CEV diffusion.  The affine-drift CEV with 0 5γ = .  is 

Heston’s (1993) square-root SV model, and the affine-drift CEV with 1 0γ = .  is 

Nelson’s (1990) GARCH SV diffusion.   
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A key element in constructing the proposed estimator is the well-known fact that, for 

the above SV model, the following relation holds between the risk-neutral expectation 

of the integrated variance over any horizon, 0τ > :  
 

 
tQ

t t t s tt
v E V ds V

τ

τ λ δ
+

, +
⎡ ⎤:= = +⎢ ⎥⎣ ⎦∫  (4) 

 

at each point in time, where 0λ >  and δ  are constants that depend on τ  and the 

parameters of the model, both under the physical and risk-neutral measures (see, for 

example, Duan and Yeh (2010)).  

 

The VIX index, a widely watched stock market volatility indicator that was introduced 

by the Chicago Board Options Exchange (CBOE), is intended to approximate t tv τ, +  
at 30τ = ,  of the S&P 500 index process, using the theoretical formula in the 

model-free implied volatility literature (see Britten-Jones and Neuberger (2000), 

Demeterfi et al. (1999), Jian and Tian (2005)) linking the market prices of a 

cross-section of options on the S&P 500 index and t tv τ, +  (see CBOE (2009)).  In the 

discussion below, we fix 30τ = ,  write tv  for 30t tv , + , and treat 2
t tVIX v=  as an exact 

relationship, which makes the spot variance observable up to an affine transformation 

with unknown parameters λ  and δ .   

 

For the S&P 500 index, the CBOE calculates and disseminates the VIX index on a 

real-time and intraday very high frequency basis, so that we do not have to collect S&P 

500 index options tick data for the calculation of tv .  If there is a liquid market for 

options written on the process of interest, with a reasonably wide and dense 

cross-section of strikes, a VIX-type model-free implied volatility may be calculated for 

financial instruments other than the S&P 500 index.  If high frequency observations of 

the price process and a VIX-type index, or option prices necessary to calculate such an 

index, are available, the realized leverage can be calculated.  Hence, the discussion 

below also applies to financial processes in addition to the S&P 500 index.  In the 
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empirical section, we use intraday VIX data.  

 

Define 

 

 ( )
T q

t T st
q V ds, := ∫V  (5) 

and 
 

 ( )1t T t T, ,:= .V V  (6) 

 

Under the SV model, (1)-(3), the realized variance t TRV ,  for the time interval [ ]t T,  is 

such that: 

 

 ( ) ( )( )

2

1
1

N p

t T t Tt i T t N t i T t N
i

RV p p⎛ ⎞
⎜ ⎟⎜ ⎟, ,+ − / + − − /⎝ ⎠

=

:= − →∑ V  (7) 

 

where 
p
→  denotes convergence in probability as the number of observations, N , 

during the fixed time interval [ ]t T,  goes to infinity.  We also have for the realized 

variance, t TRVV , , of tv , and the realized covariation, t TRCOV , , between tp  and tv : 

 

 ( ) ( )( )( ) ( )
2 2 2

1
1

2
N p

t T t Tt i T t N t i T t N
i

RVV v v λ σ γ, ,+ − / + − − /
=

:= − →∑ V  (8) 

 ( ) ( )( ) ( ) ( )( )1 1
1

N

t T t i T t N t i T t N t i T t N t i T t N
i

RCOV v v p p⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟, + − / + − − / + − / + − − /⎝ ⎠ ⎝ ⎠

=

:= − −∑   

 
1
2

p

t Tλ ρσ γ,
⎛ ⎞→ +⎜ ⎟
⎝ ⎠

V  (9) 

 

We can also define the realized correlation: 

 

 
( )
( )

1
2

2

p
t T t T

t T
t T t T t T t T

RCOV
RCORR

RVV RV
γ

ρ ρ
γ

, ,∗
,

, , , ,

+
:= → :=

V
V V

 (10) 
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Note that γ  and σ  are cancelled out.  For the special case of the Heston model 

( 0 5γ = . ) ,  ρ ρ∗ = , thereby leading to our key result: 

 

 
p

t TRCORR ρ, →  (11) 

 

For high-frequency asymptotic distributions (as N →∞  with T fixed) of these 

realized measures, see Barndorff-Nielsen and Shephard (2004) and Barndorff-Nielsen et 

al. (2006).   

 

The consistency result (11) may not hold due to a variety of factors such as 

microstructure noise, and the relation, t TRCORR ρ, = ,  is not exact for finite N and T 

even in the absence of microstructure noise.  Nevertheless, t TRCORR ,  may perform 

well as an estimator of the leverage parameter, ρ , of the Heston model.  The interval 

over which the quantities are measured at high frequency is defined to be [ ]t T,  in the 

above for notational simplicity.  However, (11) clearly holds when the measurement 

period is a collection of subintervals 1 2t t⎡ ⎤
⎢ ⎥⎣ ⎦, ,  3 4t t⎡ ⎤

⎢ ⎥⎣ ⎦, , ,  1K Kt t⎡ ⎤
⎢ ⎥−⎣ ⎦, , where t  1t=  2t<  

3t<  4t<  <  1K Kt t T−< < =  if the three realized measures that comprise the realized 

correlation are defined over the same set of subintervals and the observation intervals 

shrink to zero in each subinterval.  This is convenient as most financial markets have 

interruptions in trading, such as overnight hours, holidays, and weekends.  

 

For the affine-drift CEV SV model with 0 5γ ≠ .  and 0ρ ≠ ,  the stochastic quantity 

ρ∗,  to which t TRCORR ,  converges in probability, is not equal to ρ.   For this more 

general case, we have: 

 

 ρ ρ∗ <  (12) 
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as ( ) ( )1
2 2t T t T t Tγ γ, , ,+ <V V V  by the Cauchy-Schwartz inequality.  However, we 

report our simulation results in the next section that t TRCORR ρ, ≈ , even when 1γ =  

or 1 5γ = . .   

 

We also have: 

 

 ( )2 2 2
p

t T t T t T t TRVV RV λ σ γ, , , ,/ → / ,V V  (13) 

 

for a fixed [ ]t T, ,  which becomes: 

 

 2 2
p

t T t TRVV RV λ σ, ,/ →  (14) 

 

under the Heston SV model.  For estimating the Heston SV model, the fixed-T, the 

high frequency asymptotic relation (14) should be particularly helpful if λ  is 

estimated jointly and is not an extra parameter according to the use of (14).   

 

Furthermore, we have the following results involving λ  and δ :  

 

 ( ) ( ), 1 ,
p

t T t Tv T tλ δ,→ + −V  (15) 

 ( ) ( ) ( )2 2
, 2 2 2

p

t T t T t Tv T tλ λδ δ, ,→ + + −V V  (16) 

 

where 

 

 ( ) ( ),
1

N
q

t T t i T t N
i

T tv q v
N + − /

=

−
:= .∑  (17) 

 

These results may be exploited in a joint estimation scheme for ( )κ θ σ ρ λ δ, , , , , .  The 

additional parameters, λ  and δ ,  may be informative about the parameters of the SV 
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process under the risk-neutral measure, and hence also the volatility risk premium, but 

are nuisance parameters if the interest is only in estimating the parameters ( )κ θ σ ρ, , ,  

of the SV model under the physical measure.  In this paper, we do not pursue the use 

of these relations.  

 

BZ showed that, for the special case of the Heston SV model where the variance 

diffusion is given by: 

 

 ( ) ( )1
t t t tdV V dt V dWκ θ σ= − + ,  (18) 

 

the following analytical expressions for the conditional moments of 1t t, +V  hold: 

 

 1 2 1 1 1t t t t t tE Eα β⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ , + , +⎣ ⎦ ⎣ ⎦

= +V V  (19) 

 2 2 2
1 2 1 1 1 1 1t t t t t t t t tE E I E Jα⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ , + , + , +⎣ ⎦⎣ ⎦ ⎣ ⎦
= + +V V V  (20) 

 ( )1 2 1 1 1
1 1 1

1 1

1t t t t
t t t t t

b b
E p E p p

a a
ρσα α θ
κ

+ , + , +
+

− −⎡ ⎤ ⎡ ⎤ ⎛ ⎞= + − +⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎣ ⎦

V V
 (21) 

 1 1
1

1

t t
t t

b
a E p

a
ρσ θ, +⎛ ⎞−⎡ ⎤

+ −⎜ ⎟⎢ ⎥
⎣ ⎦⎝ ⎠

V
 

 

where 
 

 ( )1e κα β θ α− Δ
Δ Δ Δ:= , := − ,  

 ( )1 1a e b aκκ θ− − Δ⎛ ⎞
⎜ ⎟Δ Δ Δ⎝ ⎠

:= − , := Δ − ,  

 
2

1 2
2 1 2A e eκ κσ κ

κ
− − Δ − Δ⎛ ⎞

⎜ ⎟Δ ⎝ ⎠
⎡ ⎤:= − − Δ ,⎣ ⎦  

 ( )
2

2

11 2 5 1
2

B e e eκ κ κσ θ
κ κ

⎡ ⎤
− Δ − Δ − Δ⎛ ⎞ ⎛ ⎞⎢ ⎥

⎜ ⎟ ⎜ ⎟⎢ ⎥Δ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

:= + Δ − + − ,  

 
2 2 22 1

2
C e e D eκ κ κσ σ θ

κ κ
− Δ − Δ − Δ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠
:= − , := − ,  
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 ( ) ( ) 1
1 1 1 1 1 1 1 1 1 12 1 2I a C b a Aα β α α −⎛ ⎞

⎜ ⎟
⎝ ⎠

:= + + − + ,  (22) 

 ( )2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 12 1J I b a D a b A b Bβ β α⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

:= − + + + + + − + .  (23) 

 

Note that these equations reflect the corrections by Bollerslev and Zhou (2004) for the 

original equations in BZ.  For estimating ( )κ θ σ ρ, , ,  of the Heston SV, BZ proposed 

a GMM estimator (GMM-BZ1) using the sample analogues of the following set of 

moment conditions: 

 

 1 2 1 2 0t t t t tE E⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥+ , + + , +⎣ ⎦⎣ ⎦

− =V V  (24) 

 2 2
1 2 1 2 0t t t t tE E⎡ ⎤⎡ ⎤

⎢ ⎥⎢ ⎥+ , + + , +⎣ ⎦⎣ ⎦
− =V V  (25) 

 1 2 1 2 1 0t t t t t t tE E⎡ ⎤⎛ ⎞⎡ ⎤
⎢ ⎥⎜ ⎟⎢ ⎥+ , + + , + − ,⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦

− =V V V  (26) 

 2 2
1 2 1 2 1 0t t t t t t tE E V⎡ ⎤⎛ ⎞⎡ ⎤

⎢ ⎥⎜ ⎟⎢ ⎥+ , + + , + − ,⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦
− =V V  (27) 

 2
1 2 1 2 1 0t t t t t t tE E⎡ ⎤⎛ ⎞⎡ ⎤

⎢ ⎥⎜ ⎟⎢ ⎥+ , + + , + − ,⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦
− =V V V  (28) 

 2 2 2
1 2 1 2 1 0t t t t t t tE E⎡ ⎤⎛ ⎞⎡ ⎤

⎢ ⎥⎜ ⎟⎢ ⎥+ , + + , + − ,⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦
− =V V V  (29) 

 1 2 1 1 2 1
1 1

1 1

0t t t t
t t t

b b
E E p p

a a
+ , + + , +

+ +

⎡ ⎤− −⎡ ⎤
− =⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦

V V
 (30) 

 

BZ suggest simulations for calculating the conditional moments if the model being 

estimated is a non-Heston SV and suitable closed-form expressions are not available.  

As reported in the next section, however, the results of our Monte Carlo simulation 

experiments indicate that ρ , when estimated jointly by GMM-BZ1 with the other 

parameters under the Heston SV, is severely biased.  

 

For estimating ( )κ θ σ, ,  of the Heston SV model, we propose two new methods, 

namely: (i) estimate all the parameters ( )κ θ σ, ,  and ρ  jointly by GMM using the 

sample analogues of (24) - (29) and the realized leverage formula: 

 



14 
 

 t TRCORR ρ, −  (31) 

 

replacing the sample analogue of (30) (called GMM-BZ-RL); or (ii) estimate ρ  by 

ˆ t TRCORRρ ,=  (called ρ̂  RL) and ( )κ θ σ, ,  by BZ’s original GMM estimator, using 

the sample analogues of (24) - (30) (caled GMM-BZ2).  

 

It may be possible to derive the conditions on the SV process, the measurement error 

process, and the relative rate of N →∞  and T →∞ , under which the estimators, 

GMM-BZ-RL and RL, are consistent, along the lines of Corradi and Distaso (2006).  

The realized bipower variation counterparts t TRBV ,  and t TRBVV ,  to t TRV ,  and 

t TRVV , , respectively, are jump-robust estimators for 
T

st
V ds∫  and 2T

t s dsσ ,  where 

( )t t tp V tσ σ= , , ,  even if the price (1) and the spot variance process (3) contain certain 

types of jumps.  

 

Corradi and Distaso (2006) proposed to use t TRBV ,  for a jump-robust specification test 

of the diffusion component of a jump-diffusion model.  t TRCOV ,  may be affected 

even asymptotically ( N →∞ ) by jumps if the price jumps and volatility jumps arrive 

simultaneously (see Jacod and Todorov (2010) for empirical evidence of price-volatility 

cojumps in the S&P 500 index).  For 
T

s st
V dsρ σ∫ , however, a similar strategy to purge 

the effects of jumps is not available.  We may use a Lee-Mykland-type estimator (Lee 

and Mykland (2008)) to estimate directly and remove jumps from the observations.  

We leave these as topics for future research.   

 

A major complication in estimating a model of a financial process is that high frequency 

intraday observations used for constructing realized measures often do not cover an 

entire trading day.  For example, the S&P 500 cash index value is observed only for 

the period 9:30-16:00 per trading day, which is less than one-third of a day.  In 

applying GMM estimators with sets of moment conditions involving realized measures 

to individual stock prices and the S&P 500 index, Corradi and Distaso (2006) and 
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GLPR ignore the existence of overnight non-trading hours.  Treating 6.5-hour daily 

realized measures as if they were 24-hour flow quantities, and ignoring the evolution of 

the price and its stochastic volatility processes during overnight hours, lead to incorrect 

analytical expressions for the moments as functions of the unknown parameters and 

observables.   

 

Hence, we modify (25) - (30) as follows, taking the market closure (16:00-9:30) into 

consideration: 

 

 1 1 1 1 0t t t t tE E⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥+ , + +Δ + , + +Δ⎣ ⎦⎣ ⎦

− =V V  (32) 

 2 2
1 1 1 1 0t t t t tE E⎡ ⎤⎡ ⎤

⎢ ⎥⎢ ⎥+ , + +Δ + , + +Δ⎣ ⎦⎣ ⎦
− =V V  (33) 

 1 1 1 1 1 1 0t t t t t t tE E⎡ ⎤⎛ ⎞⎡ ⎤
⎢ ⎥⎜ ⎟⎢ ⎥+ , + +Δ + , + +Δ − , − +Δ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦

− =V V V  (34) 

 2 2
1 1 1 1 1 1 0t t t t t t tE E⎡ ⎤⎛ ⎞⎡ ⎤

⎢ ⎥⎜ ⎟⎢ ⎥+ , + +Δ + , + +Δ − , − +Δ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦
− =V V V  (35) 

 1 1 1 1 1 1 0t t t t t t tE E⎡ ⎤⎛ ⎞⎡ ⎤
⎢ ⎥⎜ ⎟⎢ ⎥+ , + +Δ + , + +Δ − , − +Δ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦

− =V V V  (36) 

 2 2
1 1 1 1 1 1 0t t t t t t tE E⎡ ⎤⎛ ⎞⎡ ⎤

⎢ ⎥⎜ ⎟⎢ ⎥+ , + +Δ + , + +Δ − , − +Δ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦
− = .V V V  (37) 

 

For example, observations of the S&P 500 index for a trading day are from time period 

t  (9:30) to t + Δ  (16:00) ( 0 27Δ ≈ . ).  Conditioning on the information available at 

the session’s opening, rather than the session’s closing, makes the derivation of 

conditional moments and the resulting expressions much simpler.  Following the 

derivation of (19) - (21) by BZ for the case of 1Δ =  (24-hour trading), it is 

straightforward to obtain:  

 

 1 1 1 1t t t t t tE Eα β⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ , + +Δ , +Δ⎣ ⎦ ⎣ ⎦

= + ΔV V  (38) 

 2 2 2
1 1 1t t t t t t t t tE E I E Jα⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ , + +Δ , +Δ Δ , +Δ Δ⎣ ⎦⎣ ⎦ ⎣ ⎦
= + +V V V  (39) 

 

where 
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( ) ( )

( )

1
1 1 1 1 1

2 2 2 2
1 1 1 1

2 1 2

2 1

I a C b a A

J I b a D a b A b B

α β α α

β β α

−⎛ ⎞
⎜ ⎟Δ Δ Δ Δ Δ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ Δ Δ Δ Δ Δ Δ Δ Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

:= + + − + ,

:= − + + + + + − + .
 

 

See the appendix for a derivation of the above relationships.   

 

Note that, although (38) and (39) appear to be virtually identical to BZ’s 24-hour 

trading versions, (19) and (20), they are different.  The IΔ and JΔ  given above are 

modifications of BZ’s I and J , allowing for non-full-day trading sessions over which 

the integrated variance is defined, and the resulting time gap between t + Δ  (the end of 

the period over which t t, +ΔV  is defined) and 1t +  (the beginning of the period over 

which 1 1t t+ , + +ΔV  is defined).  If 1Δ = ,  (38) and (39) reduce to (19) and (20), 

respectively.  

 

We may use the sample analogues of (32) - (37) and 
1

t t

t t t t

T RCOV

RVV RVt
ρ, +Δ

, +Δ , +Δ=
−∑  in 

constructing moment conditions for GMM estimation.  Our adjustment method 

assumes that the spot variance follows the same Heston SV during trading hours and 

overnight hours.  Admittedly, this is an unrealistic assumption.  We could consider 

lowering the average variance for night hours, but leave it as a future research topic.  

Delving too deeply into seasonality issues would defeat the purpose of using daily 

aggregate quantities for estimating simple continuous-time SV models that have proved 

useful as approximations of financial processes at the daily or weekly measurement 

intervals.  Finally, note that the realized leverage without any adjustment for 1Δ <  

converges to ρ  in probability, even if the spot variance process follows the Heston SV 

with different sets of ( )κ θ σ, ,  values during trading hours and during overnight 

non-trading hours, if ρ  remains the same.  

 

3. Finite sample simulation results 

 

In this section, we report the results of Monte Carlo simulation experiments to examine 
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the finite sample properties of the BZ GMM estimator and the proposed estimators for 

the Heston model for the case 0ρ ≠ .   Note that, although BZ derived moment 

conditions for the Heston SV model with 0ρ ≠  and extended the results to the Heston 

SV model with price jumps and two-factor SV models, they only conducted their 

experiments for the case of the Heston SV model with zero leverage, 0ρ = .   

 

The sample paths of tp  and tV  are simulated by the Euler-Maruyama scheme 

( 1 2880tΔ = / ,  or 30 seconds) 10,000 times.  The length, T , in days of each simulated 

path is 960,  as in GLPR, after the observations from a burn-in period of 240 days are 

discarded.  At the start of the burn-in period, tV  is set to θ,  the long-run average of 

the spot variance.  As in BZ and GLPR, the unit time is a day rather than a year.  

Note that we do not observe tV , in practice.  However, since we treat its affine 

transformation, tv , as observable under the affine-drift CEV and the extra parameters, 

λ  and δ , of the transformation are cancelled out in the realized leverage calculated 

using observations of tp  and tv , the simulation results would be the same if we were 

to use observations of t tv Vλ δ= + ,  regardless of the values assigned for λ  and δ.   

Hence, in order to simplify the experiments, we choose 1λ =  and 0δ = ,  thereby 

making tV  observable.  

 

(i) Data from contiguous full-day trading sessions 

We first examine the scheme in which daily trading sessions last 24 hours and there are 

no breaks between daily sessions.  The values of tp  and t tv V=  are observed once 

every five minutes, and daily realized measures are calculated once a day, using 288 

five-minute log price returns and differences in tV .   GLPR used a simulation scheme 

that is similar to ours, but they divided each day into 80 “5-minute” observation 

intervals, which are effectively 18-minute intervals.   

 

The first set of true parameter values is ( )κ θ σ ρ, , , ( 1= . , 25. , 1. , 5)−. ,  which 

corresponds to Parameter Set A in GLPR.  The long run spot variance, 25θ = . ,  which 
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is the value set in BZ, is about 7.75% per annum if one year has 240 days.  The second 

set of true parameter values is identical to the first, except that 05κ = . ,  inducing a 

slower mean reversion of the spot variance.  The parameters are estimated using 

observations from each of the simulated sample paths of { }tp  or { }t tp V, .  For all of 

our GMM estimators, we use the optimal covariance matrix estimated by the 

Newey-West scheme with five lags, as in BZ, and impose the stationarity condition, 
22κθ σ> .  

 

The results for the first set of true parameters are summarized in Panel A of Table 1.  

Note that the biases and RMSEs shown are multiplied by 100. Both the bias and the 

RMSE of ρ̂  and, to a lesser but still serious degree, the RMSE of θ̂  of GMM-BZ1, 

are so large as to render GMM-BZ1 undesirable.  The performance of the proposed 

estimator GMM-BZ1-RL relative to GMM-BZ1 is better overall in terms of biases and 

RMSEs, except for a slightly larger bias in estimating κ ,  and is vastly superior as an 

estimator of ρ .   

 

In fact, the bias and RMSE of ρ̂  are only .0007 and .0016, respectively, which are 

negligible compared with those produced by GMM-BZ1.  As ρ  does not enter (24) - 

(29), and the other parameters do not enter (31), there may be no efficiency gains in 

estimating ρ  jointly with the other parameters by GMM rather than separately by 

using the realized leverage.  This, in fact, appears to be the case, as is corroborated by 

RL’s even smaller bias and RMSE as an estimator of ρ.   The performance of 

GMM-BZ2 as an estimator of ( )κ θ σ, ,  is comparable to that of GMM-BZ-RL.  The 

overall pattern in the results of the experiment using the second set of true parameter 

values is similar to the previous case.  

 

(ii) Data from non-full-day trading sessions 

In this subsection, we investigate the effects on the GMM estimator of not properly 

correcting the moment conditions for the existence of market closure between trading 

sessions.  We assume that the log price and the variance processes follow the Heston 
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SV model, with ( ) ( ).1, .25, .1, .5κ θ σ ρ, , , = − , both day and night, and are observed 

only for the first six hours of each day.  We assume that the econometrician treats the 

observed six hours of data as arising from the first h  hours of each day ( 6h = ,  12,  

18,  or 24 ), sets 24hΔ = / ,  and estimates ( )κ θ σ, ,  by GMM, with the sample 

analogues of the moment conditions (32) - (37), and ρ  by the realized leverage.  It is 

noted that 6h =  is correct, and 24h =  ignores 18 hours in between sessions, in 

addition to incorrectly treating 6 hours as 24 hours.  Note that no adjustment is 

required in computing the realized leverage for the cases with 1Δ < .    

 

The results are shown in Table 2.  The biases and RMSEs increase as h  deviates 

from 6h = , except for κ .  Our simulation results indicate that there is a serious need 

for adjustments.  

 

(iii) Realized leverage under the affine-drift CEV with 0 5γ ≠ .  

In this subsection, we report the results of Monte Carlo simulation experiments for the 

realized leverage as an estimator for ρ , when the affine-drift CEV SV, (1) - (3) with 

tV γσ ,  5γ ≠ . ,  generates the data { }t tp v, .  Recall that the realized leverage under the 

affine-drift converges in probability to ( ) ( )1
2 2t T t T t Tρ γ γ, , ,+ / ,V V V  the absolute value 

of which is smaller than the true ρ , unless 5γ = . .   The setup is identical to the first 

setup ( 1κ = . ) used for the contiguous full-day trading sessions case, except that the 

CEV exponent γ  is set to be 1 0.  (GARCH SV) and 1 5. .    

 

The results for 1 0γ = .  and 1.5, together with those for the Heston SV case of 5γ = .  

investigated above, are summarized in Table 3.  The biases and RMSEs for the two 

non-Heston cases are larger than the very small values for the Heston SV, but are 

nevertheless still small.  This implies that ( ) ( )1
2 2 1t T t T t Tγ γ, , ,+ / ≈V V V , at least under 

the parametric configurations that have been chosen here.   
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4. Empirical results for intra-day high frequency S&P 500 and VIX 

 

We next consider applying the proposed estimators to intra-day tick data of the S&P 

500 index and VIX.  The data for both series are obtained from TickData, and the 

sample period is from September 22, 2003 through to December 31, 2007 (giving 1,077 

trading days).  Based on a visual inspection of the volatility signature plots of the S&P 

500 and the VIX data in Figures 1 and 2, we choose five-minute intervals to calculate 

intra-day log differences of the S&P 500 series and the differences in the VIX squared 

series to alleviate the effects of microstructure noise.  The raw VIX data in annualized 

percentages are scaled to daily percentages and are squared before five-minute 

increments are taken.   

 

The realized leverage obtained is -.5077. The results of the joint GMM estimation of 

( )κ θ σ, ,  by GMM-BZ2, and ( )κ θ σ ρ, , ,  by GMM-BZ-RL, are summarized in Table 4.  

The standard errors are the usual asymptotic GMM standard errors.  We need to be 

careful in interpreting the standard errors given to the ρ  estimates by GMM-BZ-RL as 

we have not yet established the asymptotics for this estimator.  It is likely that, in a 

double asymptotic framework, T →∞  and 0tΔ → , the ρ  component of the 

estimator GMM-BZ-RL is likely to be consistent for ρ  at a faster rate in the absence of 

measurement errors.   

 

When we treat the data as arising from contiguous 24-hour sessions, 24h = ,  the 

parameter of the long-run variance, θ,  is estimated to be .3647 by GMM-BZ-RL 

and .3624 by GMM-BZ2, which is not very different from the average RV, .4631.  

When we treat the data as arising from non-contiguous 6.5-hour trading sessions, its 

estimates are much larger (1.339 by GMM-BZ-RL and 1.3388 by GMM-BZ2).  The 

volatility-of-variance parameter, σ ,  is also estimated to be much larger under the 

correct 6 5h = .  assumption than under the incorrect 24h = assumption.  These 

differences would translate to large differences in theoretical option prices.  
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5.  Conclusion  

 

In this paper, we have proposed the realized leverage as an estimator for the leverage 

parameter ρ , and a modification of the BZ GMM estimator for Heston’s affine-drift 

squared-root stochastic volatility models of asset price processes.  While the BZ 

estimator using observations of the price process only performs poorly in estimating ρ,  

the proposed estimators making use of the realized covariation between the price 

process and the volatility index process delivers accurate estimates of the leverage 

parameter.   

 

We also demonstrated by simulation experiments the importance of making proper 

adjustments to the moment conditions when realized measures are computed using data 

from non-contiguous non-full-day trading sessions.  Although we have focused 

attention on the Heston model, our approach using the volatility index is applicable to 

other models.  If analytical expressions for conditional moment conditions are 

unavailable, we may resort to the simulated method of moments approach.  
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Appendix  
 
In this appendix, we derive the modifications (38) and (39) of the relations that lead to a 

set of conditional moment conditions for GMM estimation of the SV parameters to be 

applicable when each trading session lasts less than 24 hours ( 1Δ < ): 

 

 t t tE V Vα β⎡ ⎤
⎢ ⎥+Δ Δ Δ⎣ ⎦ = + ,  (40) 

 t t t tE V a V b⎡ ⎤
⎢ ⎥, +Δ Δ Δ⎣ ⎦

= + ,  (41) 

 t t t tVar V A V B⎛ ⎞
⎜ ⎟, +Δ Δ Δ⎝ ⎠

= + ,  (42) 

 ( )2 2 2 22t t t tE V V C V Dα α β β⎡ ⎤
⎢ ⎥+Δ Δ Δ Δ Δ Δ Δ⎣ ⎦

= + + + + .  (43) 

 

These are, respectively, equations (A.1), (A.2), (A.5) and (A.6) of BZ, which lead to: 

 

 1 1 1 1 1t t t t t t tE E E⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥+ , + +Δ + + , + +Δ⎣ ⎦ ⎣ ⎦⎣ ⎦

=V V  

 1 1 1 1t t t ta V a b Eα β α β⎡ ⎤
⎢ ⎥Δ Δ Δ , +Δ⎣ ⎦

= + + = + Δ,V  (44) 

 

which reduces to equation (6) of BZ if 1Δ = .  Furthermore, we have: 
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t t t t t t t t tE Var E⎛ ⎞⎡ ⎤ ⎛ ⎞ ⎡ ⎤
⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥, +Δ , +Δ , +Δ⎝ ⎠ ⎣ ⎦⎣ ⎦ ⎝ ⎠

= +V V V  

 ( )2t tA V B a V bΔ Δ Δ Δ= + + +  

 2 2 2 2t t tA V B a V b a b VΔ Δ Δ Δ Δ Δ= + + + +  

 ( )2 2 22t ta V A a b V B bΔ Δ Δ Δ Δ Δ= + + + + ,  (45) 

 

which is essentially equation (A.7) in BZ: 

 

 2 2
1 1 1 1 1t t t t t t tE E E⎡ ⎤⎡ ⎤ ⎡ ⎤

⎢ ⎥⎢ ⎥ ⎢ ⎥+ , + +Δ + + , + +Δ⎣ ⎦ ⎣ ⎦⎣ ⎦
=V V  

 ( )2 2 2
1 12t t tE a V A a b V B b⎡ ⎤

⎢ ⎥Δ + Δ Δ Δ + Δ Δ⎣ ⎦
= + + + +  

 ( ) ( ) ( )2 2 2 2 2
1 1 1 1 1 1 1 12 2t t ta V C V D A a b V B bα α β β α β⎛ ⎞

⎜ ⎟Δ Δ Δ Δ Δ Δ⎝ ⎠
= + + + + + + + + +  
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 ( ) ( )2 2 2 2
1 1 1 1 1 12 2t t t tE a C A a b Vα α β α α⎡ ⎤⎡ ⎤ ⎛ ⎞

⎢ ⎥⎜ ⎟⎢ ⎥, +Δ Δ Δ Δ Δ⎣ ⎦ ⎝ ⎠⎣ ⎦
= + + + − +V  

 ( ) 2 2 2 2
1 1 1 12 1A a b a D B bβ β α⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ Δ Δ Δ Δ Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
+ + + + + − +  

 ( )2 2 2 1
1 1 1 1 1 12 2t t t t t tE a C a A b Eα α β α α⎡ ⎤−⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎡ ⎤

⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥, +Δ Δ Δ Δ Δ , +Δ⎣ ⎦⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦
= + + + − +V V  

 ( ) 2 1
1 1 1 1 12 2a C a A b bα β α α⎡ ⎤−⎛ ⎞ ⎛ ⎞

⎢ ⎥⎜ ⎟ ⎜ ⎟Δ Δ Δ Δ Δ⎝ ⎠ ⎝ ⎠⎣ ⎦
− + + − +  

 ( ) 2 2 2 2
1 1 1 12 1A a b a D B bβ β α⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ Δ Δ Δ Δ Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
+ + + + + − +  

 2 2
1 t t t t t tE I E Jα ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥, +Δ Δ , +Δ Δ⎣ ⎦⎣ ⎦
= + + ,V V  (46) 

 

which reduces to equation (10) in BZ if 1Δ = .    
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Table 1 
 

Monte Carlo Experiment Results 
 

 
Panel A  

True Parameter Set 1: 1κ = . ,  25θ = . ,  1σ = . ,  5ρ = −.   
(faster mean reversion) 

 
 

  Bias ×  100 RMSE ×  100 

  κ  θ  σ  ρ  κ  θ  σ  ρ  

GMM-BZ1  .1116 .5777 -.0146 28.5206 1.8218 39.8720 .6407 45.8699

GMM-BZ-RL  .1720 -.3069 .0011 .0715 1.7677 2.4971 .5380 .1612

RL  .0031 .1565

GMM-BZ2  .1592 -.2995 .0041 1.7647 1.7236 .5359

 
 
 

Panel B  
True Parameter Set 2: 05κ = . ,  25θ = . ,  1σ = . ,  5ρ = −.   

(slower mean reversion) 
 

 
  Bias ×  100 RMSE ×  100 

  κ  θ  σ  ρ  κ  θ  σ  ρ  

GMM-BZ1  .3399 -.0464 -.0889 28.7774 1.3005 21.5115 .6402 46.8173

GMM-BZ-RL  .3940 -.6700 -.0792 .0702 1.2910 3.4574 .5673 .1601

RL  .0001 .1666

GMM-BZ2  .3819 -.6392 -.0736 1.2869 3.4551 .5469
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Table 2 

 
Effects of Not Properly Adjusting the Moments for Market Closure 

  
 

  Bias ×  100 RMSE ×  100 

Hours  BZ RL BZ  RL 

  κ  θ  σ  ρ  κ  θ  σ   ρ  

6  .1358 -.1080 .5870 .0019 2.0951 1.6858 1.0365  .3079

12  .1202 -12.5446 -2.4815 2.0881 12.5725 2.5544   

18  .0993 -16.6894 -3.8365 2.0861 16.6987 3.8689   

24  .0839 -18.7617 -4.6396 2.0846 18.7664 4.6603   
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Table 3 

 
Realized Leverage as an Estimator of ρ   

Under Heston ( 5γ = . ) and non-Heston CEV ( 1 0γ = . , 1 5γ = . ) 
 
 

γ   Bias ×  100 RMSE ×  100 
.5  .0031 .1565 
1.0  .3193 .3478 
1.5  .3285 .3554 
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Table 4 

 
GMM Estimation Using High-frequency S&P 500 and VIX 

 
  24h =  6 5h = .  

  κ  θ  σ  ρ  κ  θ  σ  ρ  

GMM-BZ-RL  .1584 .3647 .2457 -.5736 .1581 1.3390 .4818 -.5734

(S.E.)  (.0709) (.0687) (.1734) (.0095) (.0722) (.2424) (.3205) (.0095)

GMM-BZ2  .1576 .3624 .2438  .1589 1.3388 .4917  

(S.E.)  (.0708) (.0692) (.1746)  (.0723) (.2413) (.3147)  
 
 


