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option to switch to a different premium and notional principal anytime prior to a credit event. These are

early exercisable contracts that give the protection buyer or seller the right to step-up, step-down, or cancel

the CDS position. The pricing problem is formulated under a structural credit risk model based on Lévy

processes. This leads to the analytic and numerical studies of several optimal stopping problems subject

to early termination due to default. In a general spectrally negative Lévy model, we rigorously derive the

optimal exercise strategy. This allows for instant computation of the credit spread under various specifica-
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1. INTRODUCTION

Credit default swaps (CDSs) are among the most liquid and widely used instruments for managing and trans-

ferring credit risks. Despite the recent market turbulence, their market size still exceeds US$30 trillions1. In a

standard single-name CDS, the protection buyer pays a pre-specified periodic premium (the CDS spread) to the

protection seller to cover the loss of the face value of an asset if the reference entity defaults before expiration.

The contract stipulates that both the buyer and seller have to commit to their respective positions until the default

time or expiration date. To modify the initial CDS exposure in the future, one common way is to acquire appropri-

ate positions later from the market, but it is subject to credit spread fluctuations and market illiquidity, especially

during adverse market conditions.

To provide additional flexibility to investors, credit default swaptions and other derivatives on CDSs have

emerged. For instance, the payer (receiver) default swaption is a European option that gives the holder the right to

buy (sell) protection at a pre-specified strike spread at expiry, given that default has not occurred. Otherwise, the

swaption is knocked out. See, for example, [22]. By appropriately combining a default swaption with a vanilla

CDS position, one can create a callable or putable default swap. A callable (putable) CDS allows the protection

buyer (seller) to terminate the contract at some fixed future date. Hence, as described here, the callable/putable

CDSs are in fact cancellable CDSs. Typically, the callable feature is paid for through incremental premium on top

of the standard CDS spread, so selling a callable CDS can enhance the yield from the seller’s perspective.

In this paper, we consider a class of CDSs embedded with an option for the investor (protection buyer or seller) to

adjust the premium and notional amount once for a pre-specified fee prior to default. Specifically, these contracts

equip the standard default swaps with the early exercisable rights such as (i) the step-up option that allows the

investor to increase the protection and premium at exercise, and (ii) the step-down option to reduce the protection

and premium. By definition, these contracts are indeed generalized versions of the callable and putable CDSs

mentioned above, and thus are more flexible credit risk management tools. Henceforth, we shall use the more

general meaning of the terminology callable and putable CDSs, rather than limiting them to cancellable CDSs.

The main contribution of our paper is to determine the credit spread for these CDSs under a Lévy model,

and analyze the optimal strategy for the buyer or seller to exercise the step-up/down option. Specifically, we

model the default time as the first passage time of a Lévy process representing some underlying asset value. We

decompose the CDS with step-up/down option into a combination of an American-style credit default swaption

and a vanilla CDS. From the investor’s perspective, this gives rise to an optimal stopping problem subject to

possible sudden early termination from default risk. Our formulation is based on a general Lévy process, and then

1According to the ISDA Market Survey, the total CDS outstanding volume in 2009 is US$30,428 billions.
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we solve analytically for a general spectrally negative Lévy process. By employing the scale function and other

properties of Lévy processes, we derive analytic characterization for the optimal exercising strategy. This in turn

allows for a highly efficient computation of the credit spread for these CDS contracts. We provide a series of

numerical examples to illustrate the credit spread behavior and optimal exercising strategy under various contract

specifications and scenarios.

We adopt a Lévy-based structural credit risk model that extends the original approach introduced by Black and

Cox [10] where the asset value follows a geometric Brownian motion. Other structural default models based on

Lévy and other jump processes can also be found in [12, 20, 42]. To our best knowledge, the valuation of American

step-up and step-down CDSs has not been studied elsewhere. For Lévy-based pricing models for other credit

derivatives, such as European credit default swaptions and collateralized debt obligations (CDOs), we highlight

[3, 15, 25], among others.

Lévy processes have been widely applied in derivatives pricing. Some well-known examples of Lévy pricing

models include the variance gamma (VG) model [33], the normal inverse Gaussian (NIG) model [7], the CGMY

model [14] as well as a number of jump diffusion models (see [27, 34]). In this paper, instead of focusing on a

particular type of Lévy process, we consider a general class of Lévy processes with only negative jumps. This is

called the spectrally negative Lévy process and has been drawing much attention recently, as a generalization of

the classical Cramér-Lundberg and other compound-Poisson type processes. A number of fluctuation identities

can be expressed in terms of the scale function and are used in a number of applications. We refer the reader to

[1, 5] for derivative pricing, [30] for optimal capital structure, [8, 9] for stochastic games, [6, 29, 32] for optimal

dividend problem, and [16] for optimal timing of capital reinforcement. For a comprehensive account, see [28].

A major component of our pricing problem involves a non-standard American option subject to default risk (see

Proposition 2.1). This is related to some existing work on perpetual early exercisable options under various Lévy

models, for example [2, 5, 11, 35]. The infinite horizon nature of these problems provides significant convenience

for analysis and sometimes permits an explicit solution. For finite maturity American options, the solution can be

obtained by solving the underlying partial integral differential equation (PIDE) or by other approximation methods;

see for example [4, 21, 23]. In our model, the solution is analytic for a general spectrally negative Lévy process.

For numerical examples, we select the phase-type (and hyperexponential) fitting approach by Egami and Yamazaki

[17] to illustrate the cases when the process is a mixture of diffusion and a compound Poisson process with Pareto-

distributed jumps.

The rest of the paper is organized as follows. In Section 2, we formulate the default swap valuation problems

under a general Lévy model. In Section 3, we focus on the spectrally negative Lévy model and provide a complete

solution and detailed analysis. Section 4 provides the numerical results along with a discussion on numerical
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approximation of scale functions. Section 5 concludes the paper and presents some extensions of our model. Most

proofs are deferred to the Appendix.

2. PROBLEM OVERVIEW

Let (Ω,F ,P) be a complete probability space, where P is the risk-neutral measure used for pricing. We assume

there exists a Lévy process X = {Xt; t ≥ 0}, and denote by F = (Ft)t≥0 the filtration generated by X . The value

of the reference entity (a company stock or other assets) is assumed to evolve according to an exponential Lévy

process St = eXt , t ≥ 0. Following the Black-Cox [10] structural approach, the default event is triggered by S

crossing a lower level D, so the default time is given by the first passage time: θD := inf{ t ≥ 0 : Xt ≤ logD }.

Without loss of generality, we can take logD = 0 by shifting the initial value x. Henceforth, we shall work with

the default time:

θ := inf{ t ≥ 0 : Xt ≤ 0 },

where we assume inf ∅ =∞. Throughout this paper, we denote by Px the probability law and Ex the expectation

under which X0 = x.

2.1. Credit Default Swaps and Swaptions. In preparation for CDS with step-up/down options, let us start with

the basic concepts of credit default swaps and swaptions. Under a T -year credit default swap (CDS) on a unit

face value, the protection buyer pays a constant premium payment $p continuously over time until default time

θ or maturity T , whichever comes first. If default occurs before T , the buyer will receive the default payment

α := 1−R at time θ, whereR is the assumed constant recovery rate (typically 40%). From the buyer’s perspective,

the expected discounted payoff is given by

C̄(x; p, α, T ) := Ex
[
−
∫ θ∧T

0
e−rtp dt+ αe−rθ1{θ≤T}

]
,

where r > 0 is the positive constant risk-free interest rate. The quantity C̄(x; p, α, T ) can be viewed as the market

price for the buyer to enter (or long) a CDS with an agreed premium p, default payment α and maturity T . On the

opposite side of the trade, the protection seller’s expected cash flow is −C̄(x; p, α, T ) = C̄(x;−p,−α, T ) ∈ R.

In standard practice, the CDS spread p̄ is determined at inception such that C̄(x; p̄, α, T ) = 0, yielding zero

expected cash flows for both parties. Direct calculations show that the credit spread can be expressed as

p̄(x;α, T ) =
α r ζT (x)

1− ζT (x)− e−rTPx{θ > T}
, where ζT (x) := Ex

[
e−rθ1{θ≤T}

]
.(2.1)

For most Lévy models, due to the lack of explicit formulas, the computation of the CDS spread is based on

simulation or other approximation methods (see, for example, [12]). Alternatively, one can consider the perpetual
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case as an approximation. This is a popular approach adopted for equity derivatives, especially American options,

for which the finite-maturity contracts do not admit closed-form solutions while the perpetual versions often do.

To illustrate, we set T = +∞ and express the buyer’s CDS price as

C(x; p, α) := Ex
[
−
∫ θ

0
e−rtp dt+ α e−rθ

]
(2.2)

=
(p
r

+ α
)
ζ(x)− p

r
,

where

ζ(x) := Ex
[
e−rθ

]
.(2.3)

The seller’s CDS price is −C(x; p, α) = C(x;−p,−α) ∈ R. Solving C(x; p, α) = 0 yields the credit spread:

p(x;α) =
α r ζ(x)

1− ζ(x)
.(2.4)

Therefore, the credit spread calculation reduces to computing the Laplace transform ζ(x), which admits an explicit

analytic formula under some well-known Lévy models (see (3.4) below for the spectrally negative case). It is clear

from (2.4) that the CDS spread scales linearly in α: p(x;α) = αp(x; 1).

Next, we introduce a perpetual American payer and receiver default swaptions, which give the holder the right

to, respectively, buy and sell protection on a perpetual CDS with default payment a at a pre-specified spread κ for

the strike price K upon exercise. If default occurs prior to exercise, then the swaption is knocked out and becomes

worthless. The payer and receiver swaption holder is required to pay an upfront fee, which is given by respectively

v(x;κ, a,K) := sup
τ∈S

Ex
[
e−rτ (C(Xτ ;κ, a)−K)+ 1{τ<θ}

]
, and(2.5)

u(x;κ, a,K) := sup
τ∈S

Ex
[
e−rτ (−C(Xτ ;κ, a)−K)+ 1{τ<θ}

]
,(2.6)

where S := {τ ∈ F : τ ≤ θ a.s. } is the set of all stopping times smaller than or equal to the default time. The

two price functions are related by

v(x;κ, a,K) = u(x;−κ,−a,K).(2.7)

In summary, v(x;κ, a,K) is the payer default swaption price when κ, a ≥ 0, and it is the receiver default swaption

price when κ, a ≤ 0.
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2.2. American Callable Step-Up and Step-Down CDS. Next, we consider a CDS contract with an embedded

option that permits the protection buyer to change the face value and premium once for a fee. Beginning from

initiation, the buyer pays a premium p for a protection of a unit face value. At any time prior to default, the buyer

can select a time τ to switch to a new contract with a new premium p̂ and face value q for a fee γ. The default

payment then changes from α to α̂ = qα after the exercise time τ . Here, p, α, γ, α̂, and p̂ are constant non-negative

parameters pre-specified at time zero. The buyer’s maximal expected cash flow is given by

V (x; p, p̂, α, α̂, γ)(2.8)

:= sup
τ∈S

Ex
[
−
∫ τ

0
e−rtp dt+ 1{τ<∞}

(
−
∫ θ

τ
e−rtp̂ dt− e−rτγ1{τ<θ} + e−rθ(α̂1{τ<θ} + α1{τ=θ})

)]
.

This formulation covers default swaps with the following provisions:

(1) Step-up Option: if p̂ > p and α̂ > α, then the buyer is allowed to increase the coverage once from α to α̂

by paying the fee γ and a higher premium p̂ thereafter.

(2) Step-down Option: when p̂ < p and α̂ < α, then the buyer can reduce the coverage once from α to α̂ by

paying the fee γ and a reduced premium p̂ thereafter.

(3) Cancellation Right: as a special case of the step-down option with p̂ = α̂ = 0, the resulting contract

allows the buyer to terminate the CDS at time τ .

In addition, the perpetual vanilla CDS corresponds to the case with γ = 0, p = p̂ and α = α̂, and the CDS spread is

given by (2.4). We ignore the contract specifications with (p̂− p)(α̂−α) ≤ 0 since they would mean paying more

(less) premium in exchange for a reduced (increased) protection after exercise. In summary, we study the valuation

of the (perpetual) American callable step-up/down CDS. For any fixed parameters (p, p̂, α, α̂, γ), the value V (x) is

referred to as the buyer’s price, so the seller’s price is−V (x). The credit spread p∗ is determined from the equation

V (x; p∗, p̂, α, α̂, γ) = 0 so that no cash transaction occurs at inception.

In preparation for our solution procedure, we first provide a useful representation of the buyer’s value V . Define

α̃ := α− α̂, and p̃ := p− p̂.

Here, α̃ > 0 and p̃ > 0 hold for a step-down CDS and α̃ < 0 and p̃ < 0 for a step-up CDS.

Proposition 2.1. The perpetual American callable step-up/down CDS can be decomposed into a vanilla CDS plus

a perpetual American payer/receiver swaption. Precisely, we have

V (x; p, p̂, α, α̂, γ) = C(x; p, α) + v(x;−p̃,−α̃, γ),(2.9)

where C(·) and v(·) are given in (2.2) and (2.5) respectively.
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Proof. First, by a rearrangement of integrals, the expression inside the expectation in (2.8) becomes

1{τ<∞}

(∫ θ

τ
e−rtp̃ dt−

∫ θ

0
e−rtp dt− e−rτγ1{τ<θ} − e−rθα̃1{τ<θ} + e−rθα

)
+ 1{τ=∞}

(
−
∫ ∞

0
e−rtp dt

)
= 1{τ<∞}

(∫ θ

τ
e−rtp̃ dt− e−rτγ1{τ<θ} − e−rθα̃1{τ<θ}

)
−
∫ θ

0
e−rtp dt+ e−rθα

since τ =∞ implies θ =∞ by the definition of S. Because the last two terms do not depend on τ , we can rewrite

the buyer’s value function as

V (x) = sup
τ∈S

Ex
[
1{τ<∞}

(∫ θ

τ
e−rtp̃ dt− e−rτγ1{τ<θ} − e−rθα̃1{τ<θ}

)]
︸ ︷︷ ︸

=:f(x)

−Ex
[∫ θ

0
e−rtp dt

]
+ αEx

[
e−rθ

]
.

Here, the last two terms in fact constitute C(x; p, α). Next, using the fact {τ < θ, τ <∞} = {Xτ > 0, τ <∞}

for every τ ∈ S and the strong Markov property of X at time τ , we rewrite the first term as

f(x) = sup
τ∈S

Ex
[
e−rτh(Xτ )1{τ<∞}

]
,(2.10)

with

h(x) := 1{x>0}

(
Ex
[∫ θ

0
e−rtp̃dt − e−rθα̃

]
− γ
)

= 1{x>0}
(
C(x;−p̃,−α̃)− γ

)
.(2.11)

Since θ ∈ S and h(Xθ) = 0 a.s. on {θ < ∞}, it follows from (2.10) that f(x) ≥ 0. Therefore, it is never

optimal to exercise at any τ if h(Xτ ) < 0. Consequently, we can replace h(x) with (h(x))+ in (2.10). As a result,

with −p̃,−α̃ > (<) 0, the function f(x) is indeed the price of a perpetual American payer (receiver) default

swaption written on the buyer’s (seller’s) CDS price with strike γ ≥ 0. This implies that f(x) = v(x;−p̃,−α̃, γ)

∀x ∈ R, and therefore (2.9) follows. �

The decomposition (2.9) in Proposition 2.1 yields a static replication of the American callable step-up/down

CDS. To this end, one may also verify the result by a no-arbitrage argument. We summarize the buyer’s and

seller’s positions in the American callable step-up/down CDS in Table 1.

Proposition 2.1 also provides some insight on the protection buyer’s exercise timing. To illustrate, let us consider

an example where the premium and protection are doubled after exercise, i.e. p̂ = 2p and α̂ = 2α. For any

candidate exercise time τ , the observable market prevailing vanilla CDS spread is given by p(Xτ ;α) in (2.4), and

C(Xτ ; p(Xτ ;α), α) = 0 by definition. Hence, if p(Xτ ;α) ≤ −p̃ = p at τ , then h(Xτ ) ≤ −γ ≤ 0, and the

buyer will not exercise. This is intuitive because the buyer is better off giving up the step-up option and double his

protection by entering a separate CDS at the lower market spread p(Xτ ;α) at time τ .
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Protection Buyer’s Position Protection Seller’s Position

American Callable long a vanilla CDS & short a vanilla CDS &

Step-Up CDS long an American payer default swaption short an American payer default swaption

American Callable long a vanilla CDS & short a vanilla CDS &

Step-Down CDS long an American receiver default swaption short an American receiver default swaption

TABLE 1. Four positions of American callable step-up/down CDS and their decompositions.

The seller’s position is the opposite of the buyer’s.

2.3. The American Putable Step-Up/Down CDS. Applying the ideas from the previous subsection, we formu-

late the pricing problem for the perpetual American putable step-up/down CDS. These CDSs allow the protection

seller (and not the buyer) to change the protection premium and default payment for a fee anytime prior to default.

Let p and α be the initial premium and default payment. The seller may select a time τ to switch to a new premium

p̂ and default payment α̂ for a switching fee γ ≥ 0. The seller’s maximal expected cash flow is

U(x; p, p̂, α, α̂, γ)(2.12)

:= sup
τ∈S

Ex
[∫ τ

0
e−rtp dt+ 1{τ<∞}

(∫ θ

τ
e−rtp̂dt− e−rτγ1{τ<θ} − e−rθ(α̂1{τ<θ} + α1{τ=θ})

)]
= sup

τ∈S
Ex
[
1{τ<∞}

(
−
∫ θ

τ
e−rtp̃ dt− e−rτγ1{τ<θ} + e−rθα̃1{τ<θ}

)]
+ Ex

[∫ θ

0
e−rtp dt

]
− αEx

[
e−rθ

]
.

In particular, we will study the American putable CDS with a step-up option (i.e. p < p̂ and α < α̂) or step-

down option (i.e. p > p̂ and α > α̂). Again, the credit spread p∗ is chosen so that the seller’s value function is

zero, i.e. U(x; p∗, p̂, α, α̂, γ) = 0.

Following the procedure in the proof of Proposition 2.1 or by a no-arbitrage argument, we can simplify the

seller’s value U as follows:

Proposition 2.2. The perpetual American putable step-up/down CDS can be decomposed into a short vanilla CDS

and a long perpetual American receiver/payer default swaption. Precisely, we have

U(x; p, p̂, α, α̂, γ) = −C(x; p, α) + u(x;−p̃,−α̃, γ),(2.13)

where C(·) and u(·) are given in (2.2) and (2.6), respectively.
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Protection Buyer’s Position Protection Seller’s Position

American Putable long a vanilla CDS & short a vanilla CDS &

Step-Up CDS short an American receiver default swaption long an American receiver default swaption

American Putable long a vanilla CDS & short a vanilla CDS &

Step-Down CDS short an American payer default swaption long an American payer default swaption

TABLE 2. Four positions of American putable step-up/down CDS and their decompositions. The

seller’s position is the opposite of the buyer’s.

We summarize the buyer’s and seller’s positions in the American putable step-up/down CDS in Table 2. To gain

intuition on the seller’s exercise decision, let us look at the step-down case where p̂ = 0.5p and α̂ = 0.5α. Recall

that C(x; p, α) is decreasing in p and C(Xτ , p(Xτ ;α), α) = 0 for any stopping time τ . If the market prevailing

CDS spread p(Xτ ;α) ≤ p at some τ , then the seller’s default swaption payoff is −C(Xτ ; p̃, α̃) − γ ≤ −γ ≤ 0.

The seller will not exercise at τ since the protection of 0.5α can be purchased from a separate CDS at the lower

prevailing spread 0.5p(Xτ ;α) ≤ 0.5p.

2.4. Symmetry Between Callable and Putable CDS. By Propositions 2.1 and 2.2, along with (2.7), we observe

the following “put-call parity” and symmetry identities:

V (x; p, p̂, α, α̂, γ)− U(x; p, 2p− p̂, α, 2α− α̂, γ) = 2C(x; p, α),

V (x; p, p̂, α, α̂, γ) + U(x; p, 2p− p̂, α, 2α− α̂, γ) = 2 v(x; p̂− p, α̂− α, γ).

The first equality means a long position in an American callable step-up (step-down) CDS and a short position

in an American putable step-down (step-up) CDS result in a double long position in a vanilla CDS. From the

second equality, a long position in both an American callable step-up (step-down) CDS and an American putable

step-down (step-up) CDS yields a double long position in an American payer (receiver) default swaption.

Furthermore, according to (2.9) and (2.13), the optimal exercise times for V (x) and U(x) are determined from

v(x) and u(x) which depend on the triplet (p̃, α̃, γ) but not directly on p and α. Consequently, by (2.7), the same

optimal exercising strategy applies for both

(1) the protection buyer of an American callable CDS with a step-up (step-down) option with (−p̃,−α̃, γ),

and

(2) the protection seller of an American putable CDS with a step-down (step-up) option with (p̃, α̃, γ).

This observation means that it suffices to solve for two cases instead of four. Specifically, we shall solve for (i) the

buyer’s callable step-down case in (2.9) and (ii) the seller’s putable step-down case in (2.13), both with p̃ > 0 and



AMERICAN STEP-UP AND STEP-DOWN CDS 11

α̃ > 0. In view of (2.10) and the proof of Proposition 2.1, this amounts to solving the following optimal stopping

problems:

v(x) := v(x;−p̃,−α̃, γ) = sup
τ∈S

Ex
[
e−rτh(Xτ )1{τ<∞}

]
,(2.14)

u(x) := u(x;−p̃,−α̃, γ) = sup
τ∈S

Ex
[
e−rτg(Xτ )1{τ<∞}

]
,(2.15)

where p̃, α̃ > 0 and

h(x) :=

((
p̃

r
− γ
)
−
(
p̃

r
+ α̃

)
ζ(x)

)
1{x>0},(2.16)

g(x) :=

((
− p̃
r
− γ
)

+

(
p̃

r
+ α̃

)
ζ(x)

)
1{x>0},(2.17)

for x ∈ R. Here, h(x) and g(x) are computed using formula (2.2).

By inspecting (2.14), it follows from (2.16) that h(x) ≤ 0 ∀x ∈ R if γ ≥ p̃/r. Financially, this means that the

fee γ to be paid exceeds the maximum benefit of stepping down, i.e. perpetual annuity with premium p− p̂ > 0. It

is clear that choosing τ = θ is optimal and the protection buyer will never exercise the step-down option. Hence,

we only need to study the non-trivial case with the condition

0 ≤ γ < p̃

r
.(2.18)

For (2.15), we have g(x) ≤ 0 ∀x ∈ R if g(0+) ≤ 0 because g is decreasing in x on (0,∞). Again, this means

that θ is automatically optimal for the protection seller. Therefore, we shall focus on the case with g(0+) > 0

which also implies

0 ≤ γ < α̃.(2.19)

The intuition behind this is that the fee should not exceed the reduction in liability.

2.5. Solution Methods via Continuous and Smooth Fit. We conclude this section by describing our solution

procedure for the optimal stopping problems under a general Lévy model. In the next section, we shall focus on

the spectrally negative Lévy model and derive an analytical solution.

For our first problem (2.14), the protection buyer has an incentive to step-down when default is less likely, or

equivalently when X is sufficiently high. Following this intuition, we denote the threshold strategy

τ+
B := inf {t ≥ 0 : Xt /∈ (0, B)} , B ≥ 0.(2.20)

Clearly, τ+
B ∈ S. The corresponding expected payoff is given by

vB(x) := Ex
[
e−rτ

+
B h(Xτ+B

)1{τ+B<∞}

]
, x ∈ R.(2.21)
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Note that vB(x) = h(x) = 0 for x ≤ 0. Sometimes it is more intuitive to consider the difference

∆B(x) := vB(x)− h(x), x ∈ R.

One common solution approach for many optimal stopping problems is continuous and smooth fit (see [36, 38,

39, 40]). Applying to our problem, it involves two main steps:

(a) obtain B∗ that satisfies the continuous or smooth fit condition: ∆B∗(B
∗−) = 0 or ∆′B∗(B

∗−) = 0, and

(b) verify the optimality of τ+
B∗ by showing (i) vB∗(x) ≥ h(x) for x ∈ R and (ii) the process Mt :=

e−r(t∧θ)vB∗(Xt∧θ), t ≥ 0, is a supermartingale.

To this end, an analytical expression for vB or ∆B would be useful.

Lemma 2.1. Fix B > 0. The function ∆B is given by

∆B(x) =


(
p̃

r
− γ
)

Λ1(x;B) +

(
p̃

r
+ α̃

)
Λ2(x;B) + γ − p̃

r
, x ∈ (0, B),

0, x /∈ (0, B),

(2.22)

where Λ1(x;B) := Ex
[
e−rτ

+
B 1{τ+B<θ, τ

+
B<∞}

]
and Λ2(x;B) := Ex

[
e−rτ

+
B 1{τ+B=θ, τ+B<∞}

]
.

As we shall see in Section 3, the functions Λ1(· ;B) and Λ2(· ;B) can be computed via the scale functions for a

spectrally negative Lévy model; see (3.3) below.

In our second problem (2.15), the protection seller tends to exercise the step-down option when default is likely,

or equivalently when X is sufficiently small. Suppose the seller exercises at the first time X reaches or goes below

some fixed threshold A ≥ 0; namely,

τ−A := inf{t ≥ 0 : Xt ≤ A}.

Then, the corresponding expected payoff is given by

uA(x) := Ex
[
e−rτ

−
A g(Xτ−A

)1{τ−A<∞}

]
, x ∈ R.

Again, we denote the difference between continuation and exercise by ∆A(x) := uA(x)− g(x) for x ∈ R.

For this problem, the continuous and smooth fit solution approach is to

(a) obtain A∗ that satisfies the smooth fit condition: ∆A∗(A
∗+) = 0 or ∆′A∗(A

∗+) = 0, and

(b) verify the optimality of τ−A∗ by showing (i) uA∗(x) ≥ g(x) for x ∈ R and (ii) the process M̃t :=

e−r(t∧θ)uA∗(Xt∧θ), t ≥ 0, is a supermartingale.

This method requires some expression for ∆A, which is summarized as follows:
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Lemma 2.2. Fix A > 0. The function ∆A is given by

∆A(x) =


(
γ +

p̃

r

)
(1− ζ(x−A))− (α̃− γ) Γ(x;A), x > A,

0, x ≤ A,
(2.23)

where

Γ(x;A) := Ex
[
e−rτ

−
A 1{X

τ−
A
<0, τ−A<∞}

]
.(2.24)

The function Γ(· ;A) and Laplace transform ζ(·) can be also expressed in terms of the scale function for a

spectrally negative Lévy model; see (3.4) and Lemma 3.10 below.

3. SOLUTION METHODS UNDER THE SPECTRALLY NEGATIVE LÉVY MODEL

We proceed to solve the optimal stopping problems (2.14) and (2.15) for spectrally negative Lévy processes.

With the analytical solutions (see Theorems 3.1 and 3.2 below), the American callable/putable step-up/down CDS

can be immediately priced in view of Propositions 2.1 and 2.2.

3.1. The Spectrally Negative Lévy Process and Scale Function. Let X be a spectrally negative Lévy process

with the Laplace exponent

ψ(s) := logE0
[
esX1

]
= cs+

1

2
σ2s2 +

∫
(0,∞)

(e−sx − 1 + sx1{0<x<1}) Π(dx), s ∈ C,(3.1)

where c ∈ R, σ ≥ 0 is called the Gaussian coefficient, and Π is a Lévy measure on (0,∞) such that∫
(0,∞)(1 ∧ x

2)Π(dx) <∞. See [28], p.212. The risk neutral condition requires that ψ(1) = r so that the dis-

counted stock price is a P-martingale. In particular, when∫
(0,∞)

(1 ∧ x) Π(dx) <∞,(3.2)

we can rewrite

ψ(s) = µs+
1

2
σ2s2 +

∫
(0,∞)

(e−sx − 1) Π(dx), s ∈ C

where

µ := c+

∫
(0,1)

xΠ(dx).

Recall that the process has paths of bounded variation if and only if σ = 0 and (3.2) holds. A special example is

a compound Poisson process where Π(0,∞) < ∞. We ignore the case X is a negative subordinator (decreasing

a.s.). This means that we require µ to be strictly positive if σ = 0. See also Remark 3.1 .
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For any spectrally negative Lévy process, there exists an (r-)scale function

W (r) : R 7→ R, r ≥ 0,

whose Laplace transform is ∫ ∞
0

e−sxW (r)(x)dx =
1

ψ(s)− r
, s > Φ(r),

where Φ is the right inverse of ψ, defined by

Φ(r) := sup{λ ≥ 0 : ψ(λ) = r}, r ≥ 0.

Here, W (r)(x) = 0 on (−∞, 0). FixB ≥ x > 0. By the property of the scale function (see, for example, Theorem

8.1 of [28]), we obtain the formulas:

Λ1(x;B) = Ex
[
e−rτ

+
B 1{τ+B<θ, τ

+
B<∞}

]
=
W (r)(x)

W (r)(B)
,

Λ2(x;B) = Ex
[
e−rτ

+
B 1{τ+B=θ, τ+B<∞}

]
= Z(r)(x)− Z(r)(B)

W (r)(x)

W (r)(B)
,

(3.3)

where

Z(r)(x) := 1 + r

∫ x

0
W (r)(y)dy, x ∈ R.

Notice that Z(r)(x) = 1 for every x ∈ (−∞, 0]. The Laplace transform of θ in (2.3) becomes

ζ(x) = Z(r)(x)− r

Φ(r)
W (r)(x), x ∈ R.(3.4)

By Proposition 1 of [41], the scale function W (r) increases exponentially in x on R+, and we have

W (r)(x) ∼ eΦ(r)x

ψ′(Φ(r))
as x→∞.(3.5)

There also exists a version of the scale function WΦ(r) = {WΦ(r)(x);x ∈ R} that satisfies

W (r)(x) = eΦ(r)xWΦ(r)(x), x ∈ R,(3.6)

and ∫ ∞
0

e−sxWΦ(r)(x)dx =
1

ψ(s+ Φ(r))− r
, s > 0.

The function WΦ(r)(x) is increasing and

WΦ(r)(x) ∼ 1

ψ′(Φ(r))
as x→∞.(3.7)

From Lemmas 4.3 and 4.4 of [30], we also summarize the behavior in the neighborhood of zero.



AMERICAN STEP-UP AND STEP-DOWN CDS 15

Lemma 3.1. For every r ≥ 0, we have

W (r)(0) =

 0, unbounded variation
1
µ , bounded variation

 and W (r)′(0+) =


2
σ2 , σ > 0

∞, σ = 0 and Π(0,∞) =∞
r+Π(0,∞)

µ2
, compound Poisson

 .

Remark 3.1. When X is a negative subordinator, the scale function is not defined, but we can remedy this by

changing the measure via

dPΦ(r)

dP

∣∣∣∣
Ft

= eΦ(r)Xt−rt, t ≥ 0.

Indeed, under PΦ(r), Xt converges to ∞ a.s. as t → ∞ and the corresponding scale function becomes WΦ(r).

See p.213 of [28]. Although the resulting problem becomes an undiscounted problem, it can be solved easily by

extending the results in this paper.

3.2. Callable Step-Down CDS. We now solve (2.14) for the callable step-down CDS. First, we write down the

expected payoff function vB(x) in (2.21) with threshold B. Precisely, we have

vB(x) =


h(x), x ∈ [B,∞),

h(x) + ∆B(x), x ∈ (0, B),

0, x ∈ (−∞, 0],

(3.8)

for 0 ≤ B < ∞. If B = ∞, then vB(x) = 0, x ∈ R. If B = 0, then vB(x) = h(x), x ∈ R. Here, the stopping

value h(x) is computed using the scale function and (3.4), and is given by

h(x) =

[
p̃

(
1

r

(
1− Z(r)(x)

)
+

1

Φ(r)
W (r)(x)

)
− α̃

(
Z(r)(x)− r

Φ(r)
W (r)(x)

)
− γ
]

1{x>0}, x ∈ R.

(3.9)

By Lemma 2.1 and (3.3), the difference function ∆B(x) is given by

∆B(x) =
p̃

r

(
Z(r)(x)− 1

)
+ α̃Z(r)(x)− W (r)(x)

W (r)(B)
G(r)(B) + γ, x ∈ (0, B),(3.10)

where

G(r)(B) :=
p̃

r

(
Z(r)(B)− 1

)
+ α̃Z(r)(B) + γ, B ≥ 0.

Remark 3.2. Whenever x = B > 0, we have τ+
B = 0 < θ a.s. and hence ∆B(B) = 0 or vB(B) = h(B). In view

of (3.10), it is clear that ∆B(B−) = 0. In other words, continuous fit vB(B−) = vB(B) holds for all values of

B > 0.
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To obtain the candidate optimal threshold, we consider the smooth fit condition. To this end, we compute the

derivative

∆′B(x) = (p̃+ α̃r)W (r)(x)− W (r)′(x)

W (r)(B)
G(r)(B), 0 < x < B.

Then, we define the function

%(B) := ∆′B(B−) = (p̃+ α̃r)W (r)(B)− W (r)′(B)

W (r)(B)
G(r)(B), B > 0.

Its derivative is

%′(B) = −

(
∂

∂B

W (r)′(B)

W (r)(B)

)
G(r)(B), B > 0.

Here, notice that G(r)(B) ≥ α̃ + γ > 0 for every B ≥ 0. Therefore, the function %(B) is increasing in B if and

only if

∂

∂B

W (r)′(B)

W (r)(B)
≤ 0, B > 0.(3.11)

Assumption 3.1. We assume that (3.11) holds for (2.14).

Remark 3.3. Assumption 3.1 is rather natural. To see this, we apply W (r)′(B) = Φ(r)eΦ(r)BWΦ(r)(B) +

eΦ(r)BW ′Φ(r)(B) to write

∂

∂B

W (r)′(B)

W (r)(B)
=

∂

∂B

(
W ′Φ(r)(B)

WΦ(r)(B)

)
=

1

(WΦ(r)(B))2

(
W ′′Φ(r)(B)WΦ(r)(B)− (W ′Φ(r)(B))2

)
.

In view of this, (3.11) is guaranteed to hold when W ′′Φ(r)(x) ≤ 0 for every x ≥ 0 as WΦ(r)(x) is a non-negative

increasing function. The concavity of WΦ(r) is a reasonable assumption as confirmed by the numerical analysis

by Surya [41]. Furthermore, if the Lévy measure Π has a completely monotone density π, namely

(−1)nπ(n)(x) ≥ 0, x ≥ 0,

then W ′Φ(r) is completely monotone according to Loeffen [32] and therefore WΦ(r) is concave. Finally, we remark

that Assumption 3.1 is not needed for the problem u(x) in (2.15).

Under Assumption 3.1, there exists at most one B ∈ (0,∞), denoted by B∗, that satisfies the smooth fit

condition:

%(B∗) = 0.(3.12)

If it exists, then this is our candidate optimal threshold, and vB∗(x) is the candidate value function for (2.14).
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The smooth fit condition fails if (a) %(B) ≥ 0 ∀B > 0, or (b) %(B) < 0 ∀B > 0. Under each of these scenarios,

we need another way to deduce the candidate optimal threshold. To this end, let us consider the derivative of vB(x)

with respect to B. For 0 < x < B,

∂

∂B
vB(x) =

∂

∂B
∆B(x) = −W

(r)(x)

W (r)(B)

[
(rα̃+ p̃)W (r)(B)− W (r)′(B)

W (r)(B)
G(r)(B)

]
= −W

(r)(x)

W (r)(B)
%(B).(3.13)

Under scenario (a), %(B) ≥ 0 in (3.13) implies that vB(x) is decreasing in B for any x < B, so we choose

B∗ = 0 as our candidate optimal threshold. In this case, the buyer will stop immediately (τ+
0 = 0), and the

corresponding expected payoff vB∗ = h(x) (see (2.21)). As we show next, B∗ = 0 is possible only when X is of

bounded variation.

Lemma 3.2. We have B∗ = 0 if and only if

(1) σ = 0, (2) Π(0,∞) <∞, and (3) p̃− rγ − (α̃+ γ)Π(0,∞) ≥ 0.

As for scenario (b), it follows from (3.13) that vB(x) is increasing in B for any x < B. Therefore, we set B∗ =

∞, meaning that the buyer will never exercise (τ+
∞ = θ), and the corresponding expected payoff is v∞(x) = 0 (see

(2.21)). In fact, this corresponds to the case where the payoff h(x) ≤ 0 ∀x ∈ R. To see this, we deduce from (3.13)

and continuous fit in Remark 3.2 that, for any arbitrarily fixed x > 0, limB→∞ vB(x) ≥ vx(x) = h(x). Then,

applying dominated convergence theorem (as h is bounded) and τ+
B

B↑∞−−−→ θ a.s., we obtain limB→∞ vB(x) =

Ex
[
limB→∞ e

−rτ+B h(B)1{τ+B 6=θ}

]
= 0, and thus 0 ≥ h(x). Therefore, under our earlier assumption (2.18), we

have ruled out scenario (b).

To summarize, working under the assumption (2.18), we propose the candidate value function vB∗(x) corre-

sponding to the threshold B∗ easily obtained from (3.12) for 0 < B∗ < ∞, or B∗ = 0 otherwise. By direct

computation using (3.8)-(3.10) we get

vB∗(x) =


W (r)(x)

(
p̃+ α̃r

Φ(r)
− G(r)(B∗)

W (r)(B∗)

)
1{x 6=0}, −∞ < x < B∗,

h(x), x ≥ B∗.
(3.14)

Here, on (−∞, 0), vB∗(x) = 0 because W (r)(x) = 0.

Our next task is to show that vB∗(x) is indeed optimal.

Theorem 3.1. The candidate function vB∗(x) is optimal for (2.14). Precisely,

vB∗(x) = v(x) = sup
τ∈S

Ex
[
e−rτh(Xτ )1{τ<∞}

]
,

and τ+
B∗ is the optimal stopping time.
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FIGURE 1. Illustrating the continuous and smooth fits of the value function vB∗(·) (solid curve)

and stopping value h(·) (dashed curve). Here vB∗(0+) = 0 for the unbounded variation case

while vB∗(0+) > 0 for the bounded variation case.

In order to verify the optimality of vB∗ , we shall show that (i) vB∗ dominates h and (ii) the stochastic process

Mt := e−r(t∧θ)vB∗(Xt∧θ), t ≥ 0(3.15)

is a supermartingale.

We address the first part as follows. When B∗ = 0, it is clear that vB∗(x) = h(x) from (2.21) or the arguments

above. On the other hand, when the smooth fit condition is met, i.e. B∗ ∈ (0,∞), %(B) is monotonically

increasing and attains 0 at B∗. Therefore, when B∗ > x, vB(x) is increasing in B for B ∈ [x,B∗] by (3.13).

Then, by continuous fit in Remark 3.2, for any arbitrarily fixed x, taking B = x, we have vB∗(x) ≥ vx(x) = h(x).

Moreover, vB∗(x) = h(x) on x ≤ B∗ by definition. Consequently, (i) holds.

Lemma 3.3. We have vB∗(x) ≥ h(x) for every x ∈ R.

We now pursue the supermartingale property of the process M in (3.15). Define generator L by

Lf(x) = cf ′(x) +
1

2
σ2f ′′(x) +

∫ ∞
0

[
f(x− z)− f(x) + f ′(x)z1{0<z<1}

]
Π(dz)

for the unbounded variation case and

Lf(x) = µf ′(x) +

∫ ∞
0

[f(x− z)− f(x)] Π(dz)
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for the bounded variation case. We shall show that (L − r)vB∗(x) ≤ 0 for every x ∈ (0,∞)\{B∗}, again by way

of the scale functions.

Lemma 3.4. Fix 0 < x ≤ B <∞. The stochastic processes{
e−r(t∧τ

+
B )W (r)(Xt∧τ+B

); t ≥ 0
}

and
{
e−r(t∧τ

+
B )Z(r)(Xt∧τ+B

); t ≥ 0
}

are Px-martingales.

The following is immediate by the previous lemma and the definition of vB∗ in (3.14).

Lemma 3.5. If 0 < B∗ <∞, then (L − r)vB∗(x) = 0 for every x ∈ (0, B∗).

Now we establish via the following lemmas that (L − r)vB∗(x) ≤ 0 for every x > B∗.

Lemma 3.6. If B∗ = 0, then we have (L − r)vB∗(0+) = (L − r)h(0+) ≤ 0.

Lemma 3.7. If 0 < B∗ <∞, then we have ∆′′(B∗−) ≥ 0.

Suppose 0 < B∗ < ∞. Since vB∗(·) and v′B∗(·) are continuous at B∗ by the continuous and smooth fit

conditions, it follows from Lemma 3.7 that (L − r)vB∗(B∗−) ≥ (L − r)vB∗(B∗+), and then by Lemma 3.5 that

(L − r)vB∗(B∗+) ≤ 0. Suppose B∗ = 0, we have (L − r)vB∗(B∗+) ≤ 0 by Lemma 3.6. Now, in order to show

(L − r)vB∗(x) ≤ 0 on (B∗,∞), it is sufficient to prove that (L − r)vB∗(x) is decreasing on (B∗,∞). Rewrite

vB∗ as in the following:

vB∗(x) =
(
h̃(x) + ∆̃(x)

)
1{x 6=0}, x ∈ R

where

h̃(x) = −
(
p̃

r
+ α̃

)(
Z(r)(x)− r

Φ(r)
W (r)(x)

)
, x ∈ R,

∆̃(x) =


(
p̃

r
+ α̃

)
Z(r)(x)− W (r)(x)

W (r)(B∗)
G(r)(B∗), x ∈ (−∞, B∗),

p̃

r
− γ, x ∈ [B∗,∞).

(3.16)

Lemma 3.4 implies (L − r)h̃(x) = 0 for every x > 0. Furthermore, ∆̃′(x) = ∆̃′′(x) = 0 on x > B∗, and hence

(L − r)vB∗(x) = (L − r)∆̃(x) =

∫ ∞
0

(
∆̃(x− z)− ∆̃(x)

)
Π(dz)− (p̃− rγ) , x > B∗.

In order to show that this is decreasing in x on (B∗,∞), it is sufficient to show that the integrand in the right-hand

side is decreasing in x or equivalently ∆̃(x − z) is decreasing in x for every fixed z by noting that ∆̃(x) is a

constant on (B∗,∞).
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Lemma 3.8. The function ∆̃(·) is decreasing on R and is uniformly bounded below by p̃/r − γ > 0.

Therefore, we have (L − r)vB∗(x) ≤ 0 for every x > B∗, with 0 ≤ B∗ < ∞. Along with Lemma 3.5, we

conclude that

Lemma 3.9. The function vB∗(·) satisfies

(L − r)vB∗(x) ≤ 0, x ∈ (0,∞)\{B∗}.

Lemmas 3.3 and 3.9 prove the optimality. Due to the potential discontinuity of the value function at zero, care

must be taken in the proof. The rest of the proof is given in the appendix.

3.3. Putable Step-Down CDS. We now turn our attention to the putable step-down CDS, which amounts to

solving u(x) in (2.15) with p̃ > 0 and α̃ > 0. Under the spectrally negative Lévy model, the function Γ(· ;A)

in (2.24) can be expressed explicitly by scale functions as shown in Lemma 3.10 below. This together with (3.4)

expresses explicitly ∆A(·) in (2.23), which is needed to apply continuous and smooth fit principle.

Define

ρ(A) :=

∫ ∞
A

Π(du)
(

1− e−Φ(r)(u−A)
)
, A > 0.(3.17)

Here ρ(A) decreases monotonically in A because

ρ′(A) = −
∫ ∞
A

Π(du)Φ(r)e−Φ(r)(u−A) < 0.

Next, we express Γ(· ;A) using ρ(A) and the scale function.

Lemma 3.10. Fix A > 0, we have

Γ(x ;A) =
1

Φ(r)
W (r)(x−A)ρ(A)− 1

r

∫ ∞
A

Π(du)
(
Z(r)(x−A)− Z(r)(x− u)

)
, for A ≤ x,

and Γ(x ;A) = 0 for x < A.

We proceed to consider the continuous fit condition. First, it follows from (2.23) that, for every A > 0,

∆A(A+) =

(
γ +

p̃

r

)(
r

Φ(r)
W (r)(0)

)
− (α̃− γ)

(
1

Φ(r)
W (r)(0)ρ(A)

)
=
W (r)(0)

Φ(r)
((rγ + p̃)− (α̃− γ)ρ(A)) .

(3.18)
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If X is of unbounded variation, then W (r)(0) = 0 by Lemma 3.1, and therefore continuous fit holds for every

A > 0. Nevertheless, for the bounded variation case, we can apply the continuous fit condition: ∆A(A+) = 0,

which is equivalent to

(α̃− γ)ρ(A) = (γr + p̃).(3.19)

For the unbounded variation case, we apply the smooth fit condition. By differentiation, we have

∂

∂x
ζ(x−A)

∣∣∣∣
x=A+

= − r

Φ(r)
W (r)′(0+) and

∂

∂x
Γ(x;A)

∣∣∣∣
x=A+

=
ρ(A)

Φ(r)
W (r)′(0+),

where W (r)′(0+) > 0 (in particular, W (r)′(0+) =∞ if σ = 0 and Π(0,∞) =∞ by Lemma 3.1). Therefore,

∆′A(A+) =
W (r)′(0+)

Φ(r)
((γr + p̃)− (α̃− γ)ρ(A)) .

Consequently, the smooth fit condition, ∆′A(A+) = 0, is equivalent to (3.19).

In summary, we look for the solution to (3.19), denoted by A∗, which will be our candidate optimal threshold.

Since ρ(A) is monotonically decreasing, there exists at most one A∗ that satisfies (3.19). If it does not exist, we

set the threshold A∗ = 0.

When X has paths of bounded variation, we must have A∗ > 0 under assumption (2.19). Indeed, if A∗ = 0,

then it follows from (3.18) that ∆A(A+) > 0 for every A > 0. This implies that there exists ε > 0 such that

uε(ε+) > g(0+). However, since g(0+) attains the global maximum (because g(0+) > 0 by (2.19)), this is a

contradiction. Hence A∗ = 0 is impossible when X is of unbounded variation.

In the case with A∗ > 0, we take A∗ to be our candidate optimal threshold, and the corresponding stopping time

is τ−A∗ . The candidate value function is given by

uA∗(x) =


g(x) + ∆A∗(x), x > A∗,

g(x), 0 < x ≤ A∗,

0, x ≤ 0.

For x > 0, we can apply (3.19) to express it as

uA∗(x) = (α̃− γ)

(
1

r

∫ ∞
A∗

Π(du)
[
Z(r)(x−A∗)− Z(r)(x− u)

])
−
(
γ +

p̃

r

)
Z(r)(x−A∗) +

(
p̃

r
+ α̃

)
ζ(x).

(3.20)
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When A∗ = 0, we consider the candidate value function defined by

uA∗(x) := lim
A↓0

uA(x)

= −(α̃− γ)Γ(x;A∗)−
(
γ +

p̃

r

)
ζ(x−A∗) +

(
p̃

r
+ α̃

)
ζ(x)

= (α̃− γ)(ζ(x)− Γ(x; 0))

(3.21)

for all x > 0 and uA∗(x) = 0 for every x ≤ 0. This means that the seller will delay the exercise until X is

arbitrarily close to zero, by exercising at a sufficiently small level ε > 0. This can be realized by monitoring X as

it creeps downward through zero (see Section 5.3 of [28]). The seller may lose the opportunity to exercise prior to

default if X suddenly jumps across (below) zero.
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x

unbounded variation case bounded variation case

FIGURE 2. Illustrating the continuous and smooth fits of the value function uA∗(·) (solid curve)

and stopping value g(·) (dashed curve). Here uA∗(·) is C1 at A∗ for the unbounded variation case

while it is C0 for the bounded variation case.

Theorem 3.2. The candidate function uA∗(x) is indeed optimal. That is,

uA∗(x) = u(x) = sup
τ∈S

Ex
[
e−rτg(Xτ )1{τ<∞}

]
.

Similarly to the previous subsection, we shall show (i) uA∗ ≥ g and (ii) the supermartingale property of the

value function. We shall first show the former.
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Lemma 3.11. For every 0 < A < x, we have

∂

∂A
uA(x) =

∂

∂A
∆A(x) < 0 ⇐⇒ (α̃− γ)ρ(A)− (γr + p̃) < 0 ⇐⇒ A > A∗.

Suppose A∗ > 0. For the unbounded variation case, we can apply Lemma 3.11 for any fixed x ≥ A∗, along

with the continuous fit (which holds at any A), to get the inequality

uA∗(x) ≥ ux(x) = g(x), x ≥ A∗.

When X is of bounded variation, we have, by (3.18), ∆x(x+) ≥ 0 for every x ≥ A∗ and hence

uA∗(x) ≥ lim
A↑x

uA(x) = g(x) + lim
A↑x

∆A(x) ≥ g(x), x ≥ A∗.(3.22)

This also holds for the case A∗ = 0 by (3.21). Therefore, because uA∗(x) = g(x) on (−∞, A∗) by definition, we

have the following.

Lemma 3.12. We have uA∗(x) ≥ g(x) for every x ∈ R.

By taking advantage of Lemma 3.4 and how A∗ is chosen, we can show the following.

Lemma 3.13. We have (L − r)uA∗(x) ≤ 0 for every x ∈ (0,∞)\{A∗}.

Finally, Lemmas 3.12 and 3.13 show Theorem 3.2. The proof that uA∗ ≥ u can be carried out as in the proof

of Theorem 3.1. We also have uA∗ ≤ u. Indeed, uA∗ is attained by τ−A∗ when A∗ > 0 and can be approximated

arbitrarily closely by uε (attained by τ−ε ) for sufficiently small ε when A∗ = 0.

4. NUMERICAL EXAMPLES

In this section , we illustrate the investor’s optimal exercise strategy and the credit spread behaviors through a

series of numerical examples, where the underlying spectrally negative Lévy process is assumed to have hyperex-

ponential jumps. The class of hyperexponential distributions is dense in the class of all positive-valued distributions

with completely monotone densities (see, e.g., [17, 19]). In a related work, Asmussen et al. [3] approximate the

Lévy density of the CGMY process by a hyperexponential distribution.

4.1. Spectrally negative Lévy processes with hyperexponential jumps. Let X be a spectrally negative Lévy

process of the form

(4.1) Xt −X0 = µt+ σBt −
Nt∑
n=1

Zn, 0 ≤ t <∞.



24 T. LEUNG AND K. YAMAZAKI

Here B = {Bt; t ≥ 0} is a standard Brownian motion, N = {Nt; t ≥ 0} is a Poisson process with arrival rate

λ, and Z = {Zn;n = 1, 2, . . .} is an i.i.d. sequence of hyperexponential distributed random variables with density

function

f(z) =
m∑
i=1

αiηie
−ηiz, z > 0,

for some 0 < η1 < · · · < ηm <∞. Its Laplace exponent (3.1) is then

ψ(s) = µs+
1

2
σ2s2 − λ

m∑
i=1

αi
s

ηi + s
.(4.2)

Notice in this case that {−ηi; i = 1, . . . ,m} are the poles of the Laplace exponent ψ. Here we assume σ > 0; for

the case with σ = 0, see [17].

In this case, there are m + 1 negative solutions to the equation ψ(s) = r and their absolute values {ξi,r; i =

1, . . . ,m+ 1} satisfy the interlacing condition:

0 < ξ1,r < η1 < ξ2,r < · · · < ηm < ξm+1,r <∞.

The scale function becomes

W (r)(x) =
2

σ2
∑m+1

i=1 Ai,rξi,r

m+1∑
i=1

Ai,r

(
ξi,r

Φ(r) + ξi,r

)[
eΦ(r)x − e−ξi,rx

]
,

Z(r)(x) = 1 +
2r

σ2
∑m+1

i=1 Ai,rξi,r

m+1∑
i=1

Ai,r

(
ξi,r

Φ(r) + ξi,r

)[
1

Φ(r)

(
eΦ(r)x − 1

)
+

1

ξi,r

(
e−ξi,rx − 1

)](4.3)

for every x ≥ 0 where

Ak,r :=

∏
j∈{1,...,m}

(
1− ξk,r

ηj

)
∏
i∈{1,...,m}\{k}

(
1− ξk,r

ξi,r

) , 1 ≤ k ≤ m+ 1.

Note in this case that

WΦ(r)(x) =
2

σ2
∑m+1

i=1 Ai,rξi,r

m+1∑
i=1

Ai,r

(
ξi,r

Φ(r) + ξi,r

)[
1− e−(Φ(r)+ξi,r)x

]
, x ≥ 0,

which is concave in x. Hence, Assumption 3.1 is satisfied. Furthermore, (3.17) becomes

ρ(A) = λ
m∑
i=1

αi
Φ(r)

ηi + Φ(r)
e−ηiA, A > 0.
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4.2. Hyperexponential Fitting. If a density function f(·) is completely monotone, then it can be approximated

arbitrarily closely by those of hyperexponential distributions. Consequently, as discussed in [17], the scale function

of any spectrally negative Lévy process with a completely monotone Lévy measure can be approximated in terms

of the scale functions defined in (4.3). Here we give an example using the results obtained by Feldmann and Whitt

[19] for the case Z in (4.1) is Pareto distributed.

The Pareto distribution with positive parameters a and b is given by

F (t) = 1− (1 + bt)−a, t ≥ 0.

These have long-tails, namely eδt(1− F (t)) → ∞ as t → ∞ for any δ > 0; see [24] for more details. Feldmann

and Whitt [19] introduced a recursive algorithm to fit hyperexponential distributions and specifically computed for

Pareto and Weibull distributions. We adopt their procedure for the process in the form (4.1) with Z replaced by

Pareto random variables with a = 1.2 and b = 5. Table 3 shows the fitted data. The corresponding scale functions

can be approximated by those in the form (4.3). For the convergence results, we refer to the author’s previous work

[17].

i αi ηi i αi ηi

1 8.37E-11 8.3E-09 8 0.000147 0.0020

2 7.18E-10 6.8E-08 9 0.001122 0.0100

3 5.56E-09 3.9E-07 10 0.008462 0.0570

4 4.27E-08 2.2E-06 11 0.059768 0.3060

5 3.27E-07 1.2E-05 12 0.307218 1.5460

6 2.50E-06 6.5E-05 13 0.533823 6.5160

7 1.92E-05 3.5E-04 14 0.089437 23.304

TABLE 3. Parameters of the hyperexponential distributions fitted to a Pareto distribution with

a = 1.2 and b = 5 (taken from Table 9 of Feldmann and Whitt [19]).

4.3. Numerical Results. Let us denote the step-up/down ratio by q := p̂/p = α̂/α. For both callable and putable

CDSs, we consider the following three cases:

(C) Cancellable CDS with q = 0,

(D) Step-Down CDS with q = 0.5,

(U) Step-Up CDS with q = 1.5.
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Hence, there are in total 6 cases. The model parameters are r = 0.03 and σ = 0.2, α = 1, x = 1.5 and γ = 50bps,

unless specified otherwise. We shall adjust the values of λ and µ so that the risk-neutral condition ψ(1) = r is

satisfied.

By the symmetry argument discussed in Section 2.4, the optimal stopping problems for callable-(D) CDS and

putable-(U) CDS are equivalent. The callable-(U) and putable-(D) CDSs are also equivalent. Figure 3 shows

the optimal thresholds B∗ for callable-(C), callable-(D) and putable-(U) CDSs, and also the optimal threshold A∗

for callable-(U), putable-(C) and putable-(D) CDSs. Both B∗ and A∗ are decreasing in the premium p. This is

intuitive: for callable-(C/D) CDS, the higher premium (cost to the protection buyer) induces the buyer to exercise

earlier at a lower level B∗ to cancel or step-down the position; in contrast, for the putable-(C/D) CDS, receiving

a higher premium motivates the protection seller to delay exercising to cancel or step-down by choosing a lower

exercise threshold A∗. Also, both A∗ and B∗ increase as λ increases because it raises the chance of down-crossing

the level zero. In particular, A∗ becomes zero when λ = 0.

In Figure 4, we plot the CDS values V and U with respect to p (recall (2.8) and (2.12) for definitions). In

all cases, V is decreasing while U is increasing in p. For case (C), the values of V and U go to −γ when p is

sufficiently high and when it is sufficient low, respectively, because immediate stopping is optimal. For cases (D)

and (U), since the premium remains positive even after exercise, the value functions go to −∞ (for callable) and

∞ (for putable) as p increases. We also observe that, as λ increases, V increases and U decreases. Using the

functions V and U , the credit spread (or fair premiums) p∗ is determined where V (p∗) = 0 for the callable case,

and U(p∗) = 0 for the putable case.

Figures 5 and 6 show the credit spread p∗ as a function of the distance-to-default x for the callable and putable

CDSs, respectively, along with those for the vanilla CDSs (2.4). By the monotonicity of V and U in p, the premium

value p∗ must be unique, and it is computed by the bisection method here. As seen in the figures, as x is farther

away from default level 0, meaning a lower chance of default, the credit spread p∗ decreases. For the callable CDSs

in Figure 5, the credit spreads are naturally higher than the vanilla case due to the embedded step-up/down option.

In contrast, in the putable CDSs in Figure 6, the credit spreads are lower than the vanilla case because the buyer is

subject to the step-up/down exercise by the seller.

Although the cases (C), (D) and (U) are very different in terms of contractual features and exercise strategies,

we observe that the cancellation option (C) appears to have the strongest impact on the credit spread (relative to the

vanilla case) among all cases. One intuition is that the cancellation option has the most significant one-time change

to the premium and default payment. If multiple step-up/down options are given, however, then other interesting

situations may arise. We will discuss future research in the next section.
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FIGURE 3. The optimal thresholds for all six CDS specifications.
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buyer cancellable (top-right), callable step-down (bottom-left) and callable step-up (bottom-right)

CDSs.
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5. CONCLUDING REMARKS

In summary, the incorporation of American step-up and step-down options give CDS investors the additional

flexibility to manage and trade credit risks. The valuation of these contracts requires solving for the optimal timing

to step-up/down for the protection buyer/seller. The perpetual nature of the contract allows us to compute analyt-

ically the investor’s optimal exercise threshold under quite general Lévy credit risk models. Using the symmetry

properties between step-up and step-down contracts, we gain better intuition on various contract specifications,

and drastically simplify the procedure to determine the credit spreads.

There are a number of avenues for future research. For instance, it would be interesting to value a CDS where

both the protection buyer and seller can terminate the contract early. Then, the valuation problem can be formulated

as a modified game option as introduced by Kifer [26]. In this case, we conjecture that threshold strategies will

again be optimal for both parties and constitute Nash or Stackelberg equilibrium [18, 37]. Another direction for

future research is to consider derivatives with multiple early exercisable step-up/down options. This is related to

some optimal multiple stopping problems arising in other financial applications, such as swing options [13] and

employee stock options [31].

APPENDIX A. PROOFS

A.1. Proofs for Section 2.

Proof of Lemma 2.1. Applying the definitions of ∆B(x) and h(x) (see (2.11)) and noting that θ = ∞ whenever

τ+
B =∞, we obtain, for every x ∈ (0, B),

∆B(x)

= Ex
[

1{τ+B<∞}

(∫ θ

τ+B

e−rtp̃ dt− e−rτ
+
B γ1{τ+B<θ}

− e−rθα̃1{τ+B<θ}

)]
− Ex

[∫ θ

0
e−rtp̃ dt − e−rθα̃

]
+ γ

= Ex
[

1{τ+B<∞}

(
−
∫ τ+B

0
e−rtp̃ dt− e−rτ

+
B γ1{τ+B<θ}

+ e−rθα̃1{τ+B=θ}

)
− 1{τ+B=∞}

(∫ θ

0
e−rtp̃ dt − e−rθα̃

)]
+ γ

= Ex
[

1{τ+B<∞}
e−rτ

+
B

(
α̃1{τ+B=θ} − γ1{τ+B<θ}

)
−

(∫ τ+B

0
e−rtp̃dt

)]
+ γ

= Ex
[
1{τ+B<∞}

e−rτ
+
B

((
p̃

r
+ α̃

)
1{τ+B=θ} +

(
p̃

r
− γ
)

1{τ+B<θ}

)]
+ γ − p̃

r
.

�
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Proof of Lemma 2.2. Using the same argument as in the proof of Lemma 2.1, we can write

∆A(x) =

(
p̃

r
+ γ

)
− Ex

[
e−rτ

−
A

((
α̃+

p̃

r

)
1{τ−A=θ,τ−A<∞}

+

(
γ +

p̃

r

)
1{τ−A<θ,τ

−
A<∞}

)]
.

Therefore, we have

∆A(x) =

(
p̃

r
+ γ

)
− Ex

[
e−rτ

−
A

((
γ +

p̃

r

)
1{τ−A<∞}

+ (α̃− γ)1{τ−A=θ,τ−A<∞}

)]
=

(
γ +

p̃

r

)
(1− ζ(x−A))− (α̃− γ)Γ(x;A).

�

A.2. Proofs for Subsection 3.2.

Proof of Lemma 3.2. When σ > 0 or Π(0,∞) = ∞, we have %(0+) = −∞ because W (r)′(0+) > 0 and

W (r)(0) = 0 by Lemma 3.1. This implies that both (1) and (2) are necessary conditions for B∗ = 0. Now suppose

(1) and (2). Again by Lemma 3.1 we have after some algebra

%(0+) =
1

µ
(p̃− rγ − (α̃+ γ)Π(0,∞)) .

Therefore, condition (3) implies that %(·) ≥ 0 (i.e. scenario (a)) since %(·) is increasing. The proof is complete. �

Proof of Lemma 3.4. By (3.3) and strong Markov property, we write

Ex
[
e−rτ

+
B 1{τ+B<θ}

∣∣∣Ft∧τ+B ] = e−r(t∧τ
+
B )
W (r)(Xt∧τ+B

)

W (r)(B)
, t ≥ 0.

Therefore, by taking expectation on both sides, we obtain

Ex
[
e−r(t∧τ

+
B )
W (r)(Xt∧τ+B

)

W (r)(B)

]
= Ex

[
e−rτ

+
B 1{τ+B<θ}

]
=
W (r)(x)

W (r)(B)
, t ≥ 0.

Hence

Ex
[
e−r(t∧τ

+
B )W (r)(Xt∧τ+B

)
]

= W (r)(x), t ≥ 0.

Furthermore, we have the bound 0 ≤W (r)(Xt∧τ+B
) ≤W (r)(B). This shows the first claim.

Similarly, (3.3) and strong Markov property yield that

Ex
[
e−rτ

+
B 1{τ+B=θ}

∣∣∣Ft∧τ+B ] = e−r(t∧τ
+
B )

(
Z(r)(Xt∧τ+B

)− r

Φ(r)
W (r)(Xt∧τ+B

)

)
, t ≥ 0.

By taking expectation on both sides, we get

Ex
[
e−r(t∧τ

+
B )

(
Z(r)(Xt∧τ+B

)− r

Φ(r)
W (r)(Xt∧τ+B

)

)]
= Ex

[
e−rτ

+
B 1{τ+B=θ}

]
= Z(r)(x)− r

Φ(r)
W (r)(x).

With this and the bound 1 ≤ Z(r)(Xt∧τ+B
) ≤ Z(r)(B), we conclude the second claim. �
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Proof of Lemma 3.6. By using the martingale property of Lemma 3.4, we have

(L − r)h(0+) = (L − r)L(0+),

where

L(x) :=

(
p̃

r
− γ
)

+ (α̃+ γ) 1{x≤0}, x ∈ R.

Now, with L′(0+) = 0 and σ = 0 and Π(0,∞) <∞ by Lemma 3.2, we obtain

(L − r)L(0+) =

∫ ∞
0

(L(0− z)− L(0)) Π(dz)− r
(
p̃

r
− γ
)

= (α̃+ γ)Π(0,∞)− (p̃− γr) .

Hence, (L − r)h(0+) ≤ 0 by Lemma 3.2. �

Proof of Lemma 3.7. Notice that

∆′′(B∗−) = (rα̃+ p̃)W (r)′(B∗)− W (r)′′(B∗)

W (r)(B∗)
G(r)(B∗).

By (3.12), we have

G(r)(B∗) =

(
W (r)(B∗)

)2
W (r)′(B∗)

(p̃+ α̃r) .(A.1)

Direction substitution yields that

∆′′(B∗−) = (rα̃+ p̃)
1

W (r)′(B∗)

[(
W (r)′(B∗)

)2
−W (r)′′(B∗)W (r)(B∗)

]
= − (rα̃+ p̃)

(W (r)(B∗))2

W (r)′(B∗)

∂

∂B

W (r)′(B)

W (r)(B)
,

which is non-negative by Assumption 3.1, as desired. �

Proof of Lemma 3.8. It is clear that ∆̃(·) in (3.16) is monotonically decreasing when B∗ = 0 because ∆̃(0−) =

p̃
r + α̃ > p̃

r − γ = ∆̃(0+). Suppose 0 < B∗ <∞. By differentiating ∆̃(·), we get

∆̃′(x) = (p̃+ α̃r)W (r)(x)− W (r)′(x)

W (r)(B∗)
G(r)(B∗)

= W (r)′(x)

{
(rα̃+ p̃)

[
W (r)(x)

W (r)′(x)
− W (r)(B∗)

W (r)′(B∗)

]}
, 0 < x < B∗,

where the last equation follows from (A.1).

Now, ∆̃′(·) is non-positive because Assumption 3.1 implies that

W (r)′(x)

W (r)(x)
≥ W (r)′(B∗)

W (r)(B∗)
⇐⇒ W (r)(x)

W (r)′(x)
≤ W (r)(B∗)

W (r)′(B∗)
, x ≤ B∗.
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Furthermore, we note that

∆̃(0+)− ∆̃(0−) = − W (r)(0)

W (r)(B∗)
G(r)(B∗) ≤ 0.

Finally, it follows from continuous fit that ∆̃(B∗−) = ∆̃(B∗+) = p̃
r − γ > 0 (see (2.18)). This completes the

proof because ∆̃ is constant on (−∞, 0) ∪ (B∗,∞). �

Proof of Theorem 3.1. Due to the potential discontinuity of the value function at zero, we need to proceed carefully.

Before showing the main result, we first prove that 0 = vB∗(0) ≤ vB∗(0+) as illustrated in Figure 1.

Suppose 0 < B∗ < ∞. Both h(x) and vB∗(x) are both increasing in x (see (2.16) and (3.14)). Since W (r) is

increasing and non-negative, we must have

p̃+ α̃r

Φ(r)
− G(r)(B∗)

W (r)(B∗)
≥ 0.

Therefore,

vB∗(0+) = W (r)(0)

(
p̃+ α̃r

Φ(r)
− G(r)(B∗)

W (r)(B∗)

)
≥ 0,

and this is strictly positive if and only if X has paths of bounded variation by Lemma 3.1. On the other hand, if

B∗ = 0, we also have vB∗(0+) ≥ 0 because (3.13) implies that, for any ε > 0, ∂vB(ε)/∂B ≤ 0 for every B > ε

and limB→∞ vB(ε) = 0.

We now prove the optimality. We first construct a sequence of functions vn(·) such that (1) it is C2 everywhere

except at B∗, (2) vn(x) = vB∗(x) on x ∈ (0,∞) and (3) vn(x) ↓ vB∗(x) pointwise for every fixed x ∈ (−∞, 0).

This implies, by noting that v′B∗(x) = v′n(x) and v′′B∗(x) = v′′n(x) on (0,∞)\{B∗}, that (L − r)(vn − vB∗)(x)

decreases monotonically in n to zero for every fixed x ∈ (0,∞)\{B∗} by monotone convergence theorem. Notice

that vB∗(·) is uniformly bounded because h(·) is. Hence, we can choose so that vn is also uniformly bounded for

every fixed n ≥ 1.

Notice that

Ex
[∫ ν

0
e−rs((L − r)vn(Xs))ds

]
≤ Ex

[∫ ν

0
e−rs((L − r)(vn − vB∗)(Xs))ds

]
<∞, ν ∈ S.(A.2)

To see this, we have by Lemma 3.9

Ex
[∫ ν

0
e−rs((L − r)vn(Xs))ds

]
= Ex

[∫ ν

0
e−rs((L − r)vB∗(Xs))ds

]
+Ex

[∫ ν

0
e−rs((L − r)(vn − vB∗)(Xs))ds

]
≤ Ex

[∫ ν

0
e−rs((L − r)(vn − vB∗)(Xs))ds

]
≤ KEx

[∫ θ

0
e−rsΠ(Xs,∞)ds

]
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where K <∞ is the maximum difference between vB∗ and vn. Using N as the Poisson random measure for −X ,

we have by compensation formula (see, e.g., Theorem 4.4 in [28])

Ex
[∫ θ

0
e−rsΠ(Xs,∞)ds

]
= Ex

[∫ ∞
0

∫ ∞
0

e−rs1{θ≥s, u>Xs−}Π(du)ds

]
= Ex

[∫ ∞
0

∫ ∞
0

e−rs1{θ≥s, u>Xs−}N(du× ds)

]
= Ex

[
e−rθ

]
<∞.

Notice that, although vn is notC2 atB∗, the Lebesque measure of vn at whichX = B∗ is zero and hence v′′n(B∗)

can be chosen arbitrarily for the unbounded variation case. By applying Ito’s formula to
{
e−r(t∧θ)vn(Xt∧θ); t ≥ 0

}
,

we see that {
e−r(t∧θ)vn(Xt∧θ)−

∫ t∧θ

0
e−rs ((L − r)vn(Xs)) ds; t ≥ 0

}
(A.3)

is a local martingale. Suppose {σk; k ≥ 1} is the corresponding localizing sequence, namely,

Ex
[
e−r(t∧θ∧σk)vn(Xt∧θ∧σk)

]
= vn(x) + Ex

[∫ t∧θ∧σk

0
e−rs ((L − r)vn(Xs)) ds

]
, k ≥ 1.

Now by applying dominated convergence theorem on the left-hand side and Fatou’s lemma on the right-hand side

via (A.2), we obtain

Ex
[
e−r(t∧θ)vn(Xt∧θ)

]
≤ vn(x) + Ex

[∫ t∧θ

0
e−rs ((L − r)vn(Xs)) ds

]
.

Hence, (A.3) is in fact a supermartingale.

Now fix ν ∈ S. By optional sampling theorem, we have, for any M ≥ 0, that

Ex
[
e−r(ν∧M)vn(Xν∧M )

]
≤ vn(x) + Ex

[∫ ν∧M

0
e−rs ((L − r)vn(Xs)) ds

]
= vn(x) + Ex

[∫ ν∧M

0
e−rs ((L − r)vB∗(Xs)) ds

]
+ Ex

[∫ ν∧M

0
e−rs ((L − r)(vn − vB∗)(Xs)) ds

]
where the last equality holds because the expectation can be split by (A.2). Applying dominated convergence

theorem on the left-hand side and monotone convergence convergence theorem on the right-hand side (here the

integrands in the two expectations are negative and positive, respectively), along with Lemma 3.9, we obtain

Ex
[
e−rνvn(Xν)

]
≤ vn(x) + Ex

[∫ ν

0
e−rs((L − r)(vn − vB∗)(Xs))ds

]
.(A.4)

Furthermore, monotone convergence theorem yields the followings:

lim
n→∞

Ex
[
e−rνvn(Xν)

]
= Ex

[
e−rνvB∗(Xν)

]
,

lim
n→∞

Ex
[∫ ν

0
e−rs((L − r)(vn − vB∗)(Xs))ds

]
= 0.
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Therefore, by taking n→∞ on both sides of (A.4) (note vB∗(x) = vn(x)), we have

vB∗(x) ≥ Ex
[
e−rνvB∗(Xν)

]
≥ Ex

[
e−rνh(Xν)

]
, ν ∈ S,

where the last inequality follows from Lemma 3.3. This together with the fact that the stopping time τ+
B∗ corre-

sponds to the value function vB∗ completes the proof of Theorem 3.1. �

A.3. Proofs for Subsection 3.3.

Proof of Lemma 3.10. Let N be the Poisson random measure for −X . By the compensation formula, we get

Γ(x;A) = Ex
[∫ ∞

0

∫ ∞
0

N(dt× du)e−rt1{τ−A≥t, Xt−−u<0}

]
= Ex

[∫ ∞
0

dte−rt
∫ ∞

0
Π(du)1{τ−A≥t, Xt−−u<0}

]
=

∫ ∞
0

Π(du)

∫ ∞
0

dt
[
e−rtPx{Xt− < u, τ−A ≥ t}

]
.

Recall, for example from p.225 of [28], the fact∫ ∞
0

dt
[
e−rtPx

{
Xt ∈ dy, τ−0 > t

}]
= dy

[
e−Φ(r)yW (r)(x)−W (r)(x− y)

]
, y ≥ 0.

Applying this yields∫ ∞
0

dt
[
e−rtPx

{
Xt ∈ dy, τ−A > t

}]
=

∫ ∞
0

dt
[
e−rtPx−A

{
Xt ∈ d(y −A), τ−0 > t

}]
= dy

[
e−Φ(r)(y−A)W (r)(x−A)−W (r)(x− y)

]
,

when y ≥ A, and it is 0 otherwise. Therefore, for u ≥ A, we have∫ ∞
0

dt
[
e−rtPx{Xt− < u, τ−A ≥ t}

]
=

∫ u

A
dy
[
e−Φ(r)(y−A)W (r)(x−A)−W (r)(x− y)

]
=

∫ u−A

0
dz
[
e−Φ(r)zW (r)(x−A)−W (r)(x− z −A)

]
=
W (r)(x−A)

Φ(r)

[
1− e−Φ(r)(u−A)

]
−
∫ u−A

0
dzW (r)(x− z −A),

and it is 0 on 0 ≤ u ≤ A. Substituting this back into Γ(x;A) above, we obtain

Γ(x;A) =

∫ ∞
A

Π(du)

{
1

Φ(r)
W (r)(x−A)

(
1− e−Φ(r)(u−A)

)
−
∫ u−A

0
dzW (r)(x−A− z)

}
.
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Next, we apply (3.17) and that W (r)(x) = 0 and Z(r)(x) = 1 on (−∞, 0) to get

Γ(x;A)

=
1

Φ(r)
W (r)(x−A)ρ(A)−

∫ x

A
Π(du)

∫ u−A

0
dzW (r)(x−A− z)−

∫ ∞
x

Π(du)

∫ x−A

0
dzW (r)(x−A− z)

=
1

Φ(r)
W (r)(x−A)ρ(A)− 1

r

∫ x

A
Π(du)

(
Z(r)(x−A)− Z(r)(x− u)

)
− 1

r

∫ ∞
x

Π(du)
(
Z(r)(x−A)− 1

)
=

1

Φ(r)
W (r)(x−A)ρ(A)− 1

r

∫ ∞
A

Π(du)
(
Z(r)(x−A)− Z(r)(x− u)

)
,

as desired. �

Proof of Lemma 3.11. Fix A > 0. We differentiate to get

∂

∂A
ζ(x−A) = −rW (r)(x−A) +

r

Φ(r)
W (r)′(x−A),

∂

∂A
Γ(x;A) = −ρ(A)

Φ(r)
W (r)′(x−A) +W (r)(x−A)

∫ ∞
A

Π(du)
(

1− e−Φ(r)(u−A)
)

=

(
W (r)(x−A)− 1

Φ(r)
W (r)′(x−A)

)
ρ(A).

Therefore, it follows from (2.23) that

∂

∂A
∆A(x) =

(
W (r)(x−A)− 1

Φ(r)
W (r)′(x−A)

)
((γr + p̃)− (α̃− γ)ρ(A)) .

Applying (3.6), we have the expressions

W (r)(x−A) = eΦ(r)(x−A)WΦ(r)(x−A),

W (r)′(x−A) = Φ(r)W (r)(x−A) + eΦ(r)(x−A)W ′Φ(r)(x−A),

which yield

∂

∂A
∆A(x) =

eΦ(r)(x−A)

Φ(r)
W ′Φ(r)(x−A) ((α̃− γ)ρ(A)− (γr + p̃)) .

This completes the proof because it is known that W ′Φ(r)(x−A) is positive and ρ(A) is decreasing. �

Proof of Lemma 3.13. (1) We first show (L − r)uA∗(x) = 0 for every x > A∗. Let ũ be defined by (3.20) and

(3.21) on the whole real line (while uA∗(x) = 0 on x ∈ (−∞, 0]). Suppose A∗ > 0. Using (3.20) and recalling
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that (L − r)Z(r)(y) = 0 and (L − r)W (r)(y) = 0 for every y > 0, we have

(L − r)ũ(x) = (α̃− γ)

[
1

r

∫ ∞
A∗

Π(du)
[
(L − r)Z(r)(x−A∗)− (L − r)Z(r)(x− u)

]]
−
(
γ +

p̃

r

)
(L − r)Z(r)(x−A∗) +

(
p̃

r
+ α̃

)[
(L − r)Z(r)(x)− q

Φ(r)
(L − r)W (r)(x)

]
= −(α̃− γ)

[
1

r

∫ ∞
x

Π(du)
[
(L − r)Z(r)(x− u)

]]
= (α̃− γ)Π(x,∞).

Suppose A∗ = 0. By (3.21), we obtain (L− r)ũ(x) = (α̃− γ)Π(x,∞) similarly to the case above. Furthermore,

it is easy to show that

(L − r)(uA∗(x)− ũ(x)) = −Π(x,∞)(α̃− γ),

and hence the proof is complete.

(2) We now show for the case A∗ > 0 that we have (L − r)uA∗(x) > 0 for every 0 < x < A∗. Notice that

uA∗(x) = g(x) on 0 < x < A∗. We have

(L − r)uA∗(x) = (L − r)L(x) where L(x) := −
(
γ +

p̃

r

)
− (α̃− γ)1{x≤0}.

Therefore, we have

(L − r)uA∗(x) = (L − r)L(x) =

∫ ∞
0

(L(x− u)− L(x)) Π(du)− rL(x)

= − (α̃− γ) Π(x,∞) + (rγ + p̃) ≤ − (α̃− γ) ρ(A∗) + (rγ + p̃) = 0.

Here the inequality holds by (3.17) and because x < A∗. The last equality holds by (3.19). �
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process. Theory of Probability and Its Applications, 53, 2009.
[10] F. Black and J. Cox. Valuing corporate securities: Some effects of bond indenture provisions. Journal of

Finance, 31:351–367, 1976.
[11] S. Boyarchenko. Perpetual american options under Lévy processes. SIAM Journal of Control and Optimiza-
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493, 2002.

[36] G. Peskir. Principles of optimal stopping and free-boundary problems, volume 68 of Lecture Notes Series
(Aarhus). University of Aarhus, Department of Mathematics, Aarhus, 2001. Dissertation, University of
Aarhus, Aarhus, 2002.

[37] G. Peskir. Optimal stopping games and Nash equilibrium. Theory Probab. Appl., 53(3):558–571, 2009.
[38] G. Peskir and A. Shiryaev. Optimal stopping and free-boundary problems. Lectures in Mathematics ETH
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