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ABSTRACT. The optimal dividend problem by De Finetti (1957) has been recently generalized to the spec-

trally negative Lévy model where the implementation of optimal strategies draws upon the computation of

scale functions and their derivatives. This paper proposes a phase-type fitting approximation of the optimal

strategy. We consider spectrally negative Lévy processes with phase-type jumps as well as meromorphic

Lévy processes (Kuznetsov et al., 2010a), and use their scale functions to approximate the scale function

for a general spectrally negative Lévy process. We obtain analytically the convergence results and illustrate

numerically the effectiveness of the approximation methods using examples with the spectrally negative

Lévy process with i.i.d. Weibull-distributed jumps, the β-family and CGMY process.
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1. INTRODUCTION

In the optimal dividend problem, an insurance company wants to maximize the cumulative amount of dividends

paid out to its beneficiaries until the time of ruin. The original problem by De Finetti (1957) considered a discrete-

time case by modeling the surplus by a random walk. It has been later extended to the continuous-time diffusion

model (Jeanblanc and Shiryaev, 1995; Asmussen and Taksar, 1997; Gerber and Shiu, 2004) and to the Cramér-

Lundberg model (Gerber, 1969; Azcue and Muler, 2005). It was recently generalized to the spectrally negative

Lévy model by Avram et al. (2007) and Kyprianou and Palmowski (2007) where the surplus is a general Lévy

process with only negative jumps.
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The implementation of the optimal strategies in the spectrally negative Lévy model draws upon the computation

of the so-called scale function. Avram et al. (2007) first obtained the expected value under a barrier strategy in

terms of the scale function. Loeffen (2008) then showed that a barrier strategy is indeed optimal under a suitable

condition. The scale function also plays great roles in its extensions with transaction costs and additional terminal

values at ruin. See Loeffen (2009a,b) and Loeffen and Renaud (2010).

Despite these advances, a major obstacle still remains in putting in practice the above-mentioned results because

scale functions are in general known only up to their Laplace transforms. The implementation is even harder for

the optimal dividend problem because it requires the first derivative of the scale function. One can in principle

approximate the scale function and its derivative via the numerical Laplace inversion as discussed in Surya (2008).

However, the method is only heuristic and one cannot determine the accuracy of the approximation. Moreover, the

derivative of the scale function tends to explode in the neighborhood of zero, and therefore the error is expected

to be large near zero. For these reasons, there is a clear need of new approximation methods that work for any

spectrally negative Lévy process.

As a new tool to overcome these problems, this paper proposes a phase-type fitting approach to approximate the

scale functions as well as the solutions to the optimal dividend problem and its extensions. We obtain the scale

functions of spectrally negative Lévy processes with phase-type jumps and those in the M-class (meromorphic

Lévy processes), and apply these for a general spectrally negative Lévy model.

We first consider the class of spectrally negative Lévy processes with phase-type jumps. Consider a continuous-

time Markov chain with some initial distribution and state space consisting of a single absorbing state and a finite

number of transient states. The phase-type distribution is the distribution of the time to absorption. It is known

that the class of phase-type distributions is dense in the class of all positive-valued distributions. We obtain the

scale functions for these processes and show that they can approximate the scale function of a general spectrally

negative Lévy process arbitrarily closely.

The phase-type fitting approach has mainly three advantages. First, thanks to the smoothness and monotonicity

properties of scale functions as proved by, for example, Chan et al. (2009) and Loeffen (2008), the approximation

can be applied also to its derivative. Second, the Laplace transform of the phase-type distribution has an explicit

expression and hence can avoid the error caused while approximating the Laplace transform for a general jump

distribution. This type of errors tends to occur in other approximation methods such as Surya (2008). Third, the

phase-type fitting approach enjoys a variety of fitting algorithms. See, for example, Asmussen (1996), Bladt et al.

(2003) and Feldmann and Whitt (1998). The fitting can be applied also to empirical data and this is another major

advantage. In the first half of our numerical results, we use the results by Feldmann and Whitt (1998) and consider

the case with a Brownian motion plus a compound Poisson with Weibull-distributed jumps.
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We also consider meromorphic Lévy processes (Kuznetsov et al., 2010a), which generalizes a number of

recently-discovered Lévy processes such as Lamperti-stable processes (Caballero and Chaumont, 2006; Chau-

mont et al., 2009), hypergeometric processes (Kyprianou, 2010; Kuznetsov et al., 2010b) and processes in the β-

and Θ-families (Kuznetsov, 2009a,b). The spectrally negative versions of these processes commonly have Lévy

measures in the form

ν(dz) =

[ ∞∑
i=1

αiηie
−ηi|z|1{z<0}

]
dz, z ∈ R,(1.1)

which can be seen as an extension of the hyperexponential density and as a “discrete version” of the completely

monotone density.

The reason we consider the Lévy measure above is that it can approximate efficiently any Lévy measure with

a completely monotone density. Furthermore, if the Lévy measure is completely monotone, the barrier-strategy is

guaranteed to be optimal for the dividend problem (Loeffen, 2008). The class of Lévy measures with completely

monotone densities is rich. It enables us to model compound-Poisson-type jumps with long-tailed distributions

such as the Pareto, Weibull and gamma distributions; see Feldmann and Whitt (1998). It further allows us to

construct many of recently-introduced Lévy processes such as variance gamma processes (Madan and Milne,

1991; Madan et al., 1998), CGMY processes (Carr et al., 2002), generalized hyperbolic processes (Eberlein et al.,

1998) and normal inverse Gaussian processes (Barndorff-Nielsen, 1998). These processes can be approximated

efficiently by meromorphic Lévy processes.

Given a Lévy measure in the form (1.1), the corresponding scale function and its derivative can be expressed

explicitly as infinite sums of exponential functions. We first show that these can be approximated by finite sums

with some analytical error bounds, concluding that the error bounds for the solutions to the optimal dividend

problem can also be obtained. We then show numerically the effectiveness of the approximation procedure using

examples with β-processes (Kuznetsov, 2009a) and CGMY processes. We obtain bounds on scale functions and

solutions for the former and use them to approximate for the latter.

It should be emphasized here that the approximation procedure discussed in this paper can be applied outside

the class of optimal dividend problems. The spectrally negative Lévy model has been recently introduced widely

and the scale function plays a great role in characterizing the solutions. We refer the reader to Avram et al. (2004)

and Alili and Kyprianou (2005) for derivative pricing, Kyprianou and Surya (2007) for optimal capital structure,

Baurdoux and Kyprianou (2008, 2009) for stochastic games. For a comprehensive account, see Kyprianou (2006).

The rest of the paper is organized as follows. Section 2 summarizes the results on the classical dividend problem

and its extensions. In Section 3, we obtain the scale functions for spectrally negative Lévy processes with phase-

type jumps and show that it can approximate the scale function of a general spectrally negative Lévy process
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arbitrarily closely. We then obtain in Section 4 the scale functions for those in the M-class including its upper

and lower bounds. We conclude this paper by giving numerical results in Section 5. All proofs are given in the

appendix.

2. OPTIMAL SOLUTIONS TO DIVIDEND PROBLEM VIA SCALE FUNCTIONS

This section reviews the classical dividend problem and its extensions focusing on the spectrally negative Lévy

model. Let (Ω,F ,P) be a probability space hosting a spectrally negative Lévy process X = {Xt; t ≥ 0} with its

Laplace exponent

ψ(s) := logE
[
esX1

]
= µ̂s+

1

2
σ2s2 +

∫ 0

−∞
(esz − 1− sz1{z>−1})ν(dz), s ∈ C(2.1)

where ν is a Lévy measure with the support (−∞, 0) that satisfies the integrability condition
∫

(−∞,0)(1∧z
2)ν(dz) <

∞. Moreover, let Px be the conditional probability under which X0 = x (also let P ≡ P0), and F := {Ft : t ≥ 0}

be the filtration generated by X . The process X is called the Lévy insurance risk process (or the risk process in

short), and models the surplus of an insurance company before dividends are deducted.

The classical dividend problem is a control problem where the cumulative amount of dividends prior to ruin is

maximized. A (dividend) strategy π := {Lπt ; t ≥ 0} is given by a nondecreasing, left-continuous and F-adapted

process starting at zero. Corresponding to every strategy π, the remaining amount of surplus after dividends are

deducted is given by Uπ = {Uπt : t ≥ 0} where

Uπt := Xt − Lπt , t ≥ 0,

and its ruin time is the first time it goes below zero:

σπ = inf {t > 0 : Uπt < 0} .

A lump-sum payment must be smaller than the available fund and hence it is required that

Lπt+ − Lπt ≤ Uπt , t < σπ a.s.(2.2)

Let Π be the set of all admissible strategies satisfying (2.2). The problem concerns the expected sum of total

discounted dividends until ruin

vπ(x) := Ex
[∫ σπ

0
e−qtdLπt

]
, π ∈ Π,

and wants to obtain an admissible strategy that maximizes it. Hence the classical dividend problem is written as

(2.3) v(x) := sup
π∈Π

vπ(x).
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2.1. Scale functions. The solutions to the dividend problems can be written in terms of the scale function. Here,

we describe the scale function and summarize its properties that will be used in this paper.

Fix q ≥ 0 and any spectrally negative Lévy process with its Laplace exponent ψ as defined in (2.1). The scale

function W (q) : R 7→ R is a function whose Laplace transform is given by∫ ∞
0

e−sxW (q)(x)dx =
1

ψ(s)− q
, s > ζq(2.4)

where

ζq := sup{s ≥ 0 : ψ(s) = q}, q ≥ 0.(2.5)

We assume W (q)(x) = 0 on (−∞, 0).

Let us define the first down- and up-crossing times, respectively, by

τa := inf {t ≥ 0 : Xt < a} and τ+
b := inf {t ≥ 0 : Xt > b} ,(2.6)

for every 0 ≤ a ≤ x ≤ b. Then we have

Ex
[
e−qτ

+
b 1{τ+b <τ0}

]
=
W (q)(x)

W (q)(b)
and Ex

[
e−qτ01{τ+b >τ0}

]
= Z(q)(x)− Z(q)(b)

W (q)(x)

W (q)(b)
(2.7)

where

Z(q)(x) := 1 + q

∫ x

0
W (q)(y)dy, x ∈ R.(2.8)

Here, we disregard the case when X is a negative subordinator (or decreasing a.s.).

We also consider a version of the scale function Wζq : R 7→ R that satisfies

W (q)(x) = eζqxWζq(x), x ∈ R(2.9)

with its Laplace transform ∫ ∞
0

e−sxWζq(x)dx =
1

ψ(s+ ζq)− q
, s > 0.(2.10)

Suppose Pc, for any given c > 0, is the probability measure defined by the Esscher transform

dPc
dP

∣∣∣∣
Ft

= ecXt−ψ(c)t, t ≥ 0;

see page 78 of Kyprianou (2006). Then Wζq under Pζq is analogous to W (0) under P. Furthermore, it is known

that Wζq is monotonically increasing and

Wζq(x)↗ (ψ′(ζq))
−1 as x→∞,(2.11)
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which also implies that the scale function W (q) increases exponentially in x;

W (q)(x) ∼ eζqx

ψ′(ζq)
as x→∞.(2.12)

Due to the fact that Wζq does not explode for large x as opposed to W (q), it is often convenient to deal with Wζq

and convert it to W (q) using (2.9), especially when numerical computations are involved; see Surya (2008).

Recall that a spectrally negative Lévy process has paths of bounded variation if and only if

σ = 0 and
∫

(−∞,0)
(1 ∧ |x|)ν(dx) <∞;

see, for example, Kyprianou (2006), Lemma 2.12. In this case, we can rewrite the Laplace exponent (2.1) by

ψ(s) = µs+
1

2
σ2s2 +

∫ 0

−∞
(esz − 1)ν(dz), s ∈ C,

with

µ := µ̂−
∫ 0

−1
zν(dz).

Regarding the smoothness of the scale function, it has been shown by Chan et al. (2009) that if a Lévy process

has a Gaussian component (σ > 0), we have W (q) ∈ C2(0,∞). When it does not have a Gaussian component

and if its jump distribution has no atoms, we have W (q) ∈ C1(0,∞). In particular, a stronger result holds for

the completely monotone jump case. Recall that a density function f is called completely monotone if all the

derivatives exist and, for every n ≥ 1,

(−1)nf (n)(x) ≥ 0, x ≥ 0,

where f (n) denotes the nth derivative of f .

Lemma 2.1 (Loeffen (2008)). If the Lévy measure has a completely monotone density, Wζq is again completely

monotone.

Finally, the behavior in the neighborhood of zero is given as follows. See Lemmas 4.3 and 4.4 of Kyprianou

and Surya (2007).

Lemma 2.2. For every q ≥ 0, we have

W (q)(0) =

 0, unbounded variation
1
µ , bounded variation

 and W (q)′(0+) =


2
σ2 , σ > 0

∞, σ = 0 and ν(−∞, 0) =∞
q+ν(−∞,0)

µ2
, compound Poisson

 .
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2.2. Solutions in terms of scale functions. In a spectrally negative Lévy model, the expected value under the

barrier strategy can be expressed in terms of the scale function as shown by Avram et al. (2007). A barrier strategy

at level a ≥ 0 is denoted by πa := {Lat ; t ≤ σa} where

Lat := sup
s≤t

(Xs − a) ∨ 0, t ≥ 0.

We further let σa := inf {t > 0 : Uπat < 0} denote the corresponding ruin time.

Theorem 2.1 (Avram et al. (2007), (5.1)). For every a ≥ 0, we have

vπa(x) =

 ua(x), x ≤ a,

x− a+ ua(a), x > a,
(2.13)

where

ua(x) :=
W (q)(x)

W (q)′(a)
.(2.14)

Furthermore, the barrier strategy attains optimality under a suitable condition.

Theorem 2.2 (Loeffen (2008)). Suppose a∗ satisfies

W (q)′(a) ≤W (q)′(b), a∗ ≤ a ≤ b.

Then the barrier strategy πa∗ is an optimal strategy.

In view of the above, an optimal barrier strategy exists, for example, when W ′ is convex, which holds whenever

Lévy measure has a completely monotone density as in Lemma 2.1.

Extension with bail-out. A variant called the bail-out problem is discussed in Avram et al. (2007). Here the

beneficiary of the dividends must inject capital to keep the risk process from going below zero. A strategy is now

a pair π =
{
Lπ, Rπ

}
where Lπ is the cumulative amount of dividends as in the classical model and Rπ is a

right-continuous process representing the cumulative amount of injected capital satisfying∫ ∞
0

e−qtdRπt <∞, a.s.(2.15)

Assume that ϕ > 1 is the cost per unit injected capital, the problem is to maximize

vπ(x) = Ex
[∫ ∞

0
e−qtdLπt − ϕ

∫ ∞
0

e−qtdRπt

]
among all strategies that satisfy (2.2) and (2.15). In this model, the optimal strategy reduces to the double-barrier

strategy that regulates the risk process Vt := Xt − Lπt +Rπt inside the interval [0, d∗] where

d∗ := inf
{
a > 0 : G(a) := (ϕZ(q)(a)− 1)W (q)′(a)− ϕqW (q)(a)2 ≤ 0

}
.(2.16)
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The value function becomes vd∗(x) with

vd(x) =

 ϕ
(∫ x

0 Z
(q)(y)dy + ψ′(0+)

q

)
+ Z(q)(x)

[
1−ϕZ(q)(d)

qW (q)(d)

]
, 0 ≤ x ≤ d,

x− d+ vd(d), x > d.
(2.17)

Extension with terminal values at ruin. Loeffen and Renaud (2010) recently considered the case with addi-

tional terminal costs at ruin; the objective function is

max
π∈Π

Ex
[∫ σπ

0
e−qtdLπt + e−qσ

π
P (Uπσπ)1{σπ<∞}

]
for some affine function P (y) := S + Ky. Its special case with constant terminal value was studied by Loeffen

(2009a). With the assumption that the tail of the Lévy measure is log-convex, the optimal solution is either the

barrier strategy or the take-the-money-and-run strategy where the latter immediately pays out all the dividends and

forces the ruin to occur immediately. For the former case, the optimal barrier level is given by

b∗ := sup {b ≥ 0 : F (b) ≥ F (x) for all x ≥ 0}

where for every x ≥ 0

F (x) :=
1−A(x)

W (q)′(x)
,(2.18)

and

A(x) := K
(
Z(q)(x)− ψ′(0+)W (q)(x)

)
+ SqW (q)(x).

The value function is given by ṽb∗(x) with

ṽb(x) =

 S +
∫ x

0 A(y)dy + 1−A(b)

W (q)′ (b)
W (q)(x), 0 ≤ x ≤ b,

x− b+ vb(b), x > b.
(2.19)

Extension with transaction costs. An extension allowing transaction costs is discussed in Loeffen (2009b)

where the objective is to maximize

Ex
∫ σπ

0
e−qtd

Lπt − ∑
0≤s<t

δ1{∆Lπs>0}

 .
Here δ > 0 is the unit transaction cost and the strategy is assumed to be defined by a pure jump process in the form

Lπt =
∑

0≤s<t
∆Lπs , t ≥ 0.

For this impulse control problem, the role of the barrier strategy in the classical model is now replaced by the so-

called (c1, c2)-policy which is commonly known in inventory control. The (c1, c2)-policy brings the risk process
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down to the level c1 whenever the risk process goes above the level c2. Loeffen (2009b) showed that (c∗1, c
∗
2)-policy

is optimal if it satisfies c∗2 − c∗1 − δ ≥ 0, minimizes the function

g(c1, c2) =
W (q)(c2)−W (q)(c1)

c2 − c1 − δ
,

and satisfies W (q)′(a) ≤W (q)′(b) for every c∗2 ≤ a ≤ b. The value function has the form (2.13) where the optimal

threshold level is replaced with c∗2.

3. SCALE FUNCTIONS FOR SPECTRALLY NEGATIVE LÉVY PROCESSES WITH PHASE-TYPE JUMPS

As we have seen in the last section, the implementation of the optimal strategies in the optimal dividend problem

draws upon the computation of scale functions. This section obtains the scale function of the spectrally negative

Lévy process with phase-type jumps and shows that it can be used to approximate the scale function of any

spectrally negative Lévy process.

3.1. Spectrally negative Lévy processes with phase-type jumps. Consider a continuous-time Markov chain

Y = {Yt; t ≥ 0} with finite state space {1, . . . ,m} ∪ {∆} where 1, . . . ,m are transient and ∆ is absorbing. Its

initial distribution is given by a simplex α = [α1, . . . , αm] such that αi = P {Y0 = i} for every i = 1, . . . ,m. The

intensity matrixQ is partitioned into the m transient states and the absorbing state ∆, and is given by

Q :=

T t

0 0

 .
Here T is an m×m-matrix called the phase-type generator, and t = −T1 where 1 = [1, . . . , 1]′. A distribution is

called phase-type with representation (m,α,T ) if it is the distribution of the absorption time to ∆ in the Markov

chain described above. It is known that T is non-singular and thus invertible; see Asmussen (1996). Its distribution

and density functions are given, respectively, by

F (z) = 1−αeT z1 and f(z) = αeT zt, z ≥ 0.

Let X = {Xt; t ≥ 0} be a spectrally negative Lévy process of the form

(3.1) Xt −X0 = µt+ σBt −
Nt∑
n=1

Zn, 0 ≤ t <∞,

for some µ ∈ R and σ ≥ 0. Here B = {Bt; t ≥ 0} is a standard Brownian motion, N = {Nt; t ≥ 0} is a Poisson

process with arrival rate λ, and Z = {Zn;n = 1, 2, . . .} is an i.i.d. sequence of phase-type distributed random

variables with representation (m,α,T ). These processes are assumed independent. Its Laplace exponent is then

ψ(s) = µs+
1

2
σ2s2 + λ

(
α(sI − T )−1t− 1

)
,(3.2)
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which is analytic for every s ∈ C except for the eigenvalues of T .

Disregarding the case when X is a negative subordinator, we consider the following two cases:

Case 1: when σ > 0 (i.e. X has unbounded variation),

Case 2: when σ = 0 and µ > 0 (i.e. X is a compound Poisson process).

Notice, in Case 2, that we can write Xt = Ut −
∑Nt

n=1 Zn where Ut = x + µt is a (positive) subordinator. This

implies that down-crossing of a threshold can occur only by jumps; see, for example, Chapter III of Bertoin (1996).

On the other hand, in Case 1, down-crossing can occur also by creeping downward (by the diffusion components).

Due to this difference, the form of the scale function differs as we shall see.

Fix q > 0. Consider the Cramér-Lundberg equation

ψ(s) = q,(3.3)

and define the set of (the absolute values of) negative roots and the set of poles:

Iq := {i : ψ(−ξi,q) = q and R(ξi,q) > 0} ,

Jq :=

{
j :

q

q − ψ(−ηj)
= 0 and R(ηj) > 0

}
.

The elements in Iq and Jq may not be distinct, and, in this case, we take each as many times as its multiplicity. By

Lemma 1 of Asmussen et al. (2004), we have

|Iq| =

 |Jq|+ 1, for Case 1,

|Jq|, for Case 2.

In particular, if the representation is minimal (see Asmussen et al. (2004)), we have |Jq| = m.

Let κq be an independent exponential random variable with parameter q and denote the running maximum and

minimum, respectively, by

Xt = sup
0≤s≤t

Xs and Xt = inf
0≤s≤t

Xs, t ≥ 0.

The Wiener-Hopf factorization states that q/(q − ψ(s)) = ϕ+
q (s)ϕ−q (s) for every s ∈ C such that R(s) = 0, with

the Wiener-Hopf factors

ϕ−q (s) := E
[
exp(sXκq)

]
and ϕ+

q (s) := E
[
exp(sXκq)

]
(3.4)

that are analytic for s with R(s) > 0 and R(s) < 0, respectively. By Lemma 1 of Asmussen et al. (2004), we

have, for every s such thatR(s) > 0,

ϕ−q (s) =

∏
j∈Jq(s+ ηj)∏

j∈Jq ηj

∏
i∈Iq ξi,q∏

i∈Iq(s+ ξi,q)
,(3.5)



SOLVING OPTIMAL DIVIDEND PROBLEMS VIA PHASE-TYPE FITTING APPROXIMATION OF SCALE FUNCTIONS 11

from which we can obtain the distribution of Xκq by the Laplace inverse via partial fraction expansion.

As in Remark 4 of Asmussen et al. (2004), let n denote the number of different roots in Iq and mi denote the

multiplicity of a root ξi,q for i = 1, . . . , n. Then we have

P
{
−Xκq ∈ dx

}
=

n∑
i=1

mi∑
k=1

A
(k)
i,q ξi,q

(ξi,qx)k−1

(k − 1)!
e−ξi,qxdx, x > 0(3.6)

where

A
(k)
i,q :=

1

(mi − k)!

∂mi−k

∂smi−k
ϕ−q (s)(s+ ξi,q)

mi

ξki,q

∣∣∣∣∣
s=−ξi,q

.

Notice that this can be simplified significantly when all the roots in Iq are distinct.

3.2. Scale functions for spectrally negative Lévy processes with phase-type jumps. Here we obtain the scale

function. We focus on the case q > 0 because the scale function when q = 0 (and X drifts to infinity) can be

derived by using W (0)(x) = Px {X∞ ≥ 0} /ψ′(0) and the ruin probability (19) of Asmussen et al. (2004) by

taking q → 0. Kyprianou and Palmowski (2007) briefly stated the scale function when q = 0 and all the roots in

Iq are distinct.

Before obtaining the scale function, we shall first represent the positive root ζq (2.5) in terms of the negative

roots {ξi,q; i ∈ Iq}. Let us define

%q :=
n∑
i=1

A
(1)
i,q ξi,q, q > 0,(3.7)

and by Lemma 2.2

θ := −ζqW (q)(0) +W (q)′(0+) =

 2
σ2 , for Case 1

− ζq
µ + q+λ

µ2
, for Case 2

 .(3.8)

Lemma 3.1. For every q > 0, we have

ζq
q

=
θ

%q
.

We now obtain the version of the scale function Wζq(·). In the lemma below, Wζq(0) = W (q)(0) is either 0 or
1
µ depending on if it is Case 1 or Case 2; see Lemma 2.2.

Lemma 3.2. For every q > 0, we have

Wζq(x)−Wζq(0) =
ζq
q

n∑
i=1

mi∑
k=1

A
(k)
i,q

(
ξi,q

ζq + ξi,q

)k 1− e−(ζq+ξi,q)x
k−1∑
j=0

((ζq + ξi,q)x)j

j!

 , x ≥ 0.

Lemma 3.2 together with (2.12) and Lemmas 2.2 and 3.1 shows the following.



12 M. EGAMI AND K. YAMAZAKI

Proposition 3.1. For every q > 0 and x ≥ 0, we have the following.

(1) For Case 1, we have

W (q)(x) =
2

σ2%q

n∑
i=1

mi∑
k=1

A
(k)
i,q

(
ξi,q

ζq + ξi,q

)k eζqx − e−ξi,qx k−1∑
j=0

((ζq + ξi,q)x)j

j!

 .
(2) For Case 2, we have

W (q)(x) =
1

%q

(
−ζq
µ

+
q + λ

µ2

) n∑
i=1

mi∑
k=1

A
(k)
i,q

(
ξi,q

ζq + ξi,q

)k eζqx − e−ξi,qx k−1∑
j=0

((ζq + ξi,q)x)j

j!

+
1

µ
eζqx.

Recall that the solution to the dividend problem requires the derivative. The scale functions obtained above are

infinitely differentiable. In particular, the first derivative becomes

W (q)′(x) =
2

σ2%q

n∑
i=1

mi∑
k=1

A
(k)
i,q

(
ξi,q

ζq + ξi,q

)k ζqeζqx + ξi,qe
−ξi,qx ((ζq + ξi,q)x)k−1

(k − 1)!
− ζqe−ξi,qx

k−2∑
j=0

((ζq + ξi,q)x)j

j!


for Case 1 and

W (q)′(x) =
1

%q

(
−ζq
µ

+
q + λ

µ2

) n∑
i=1

mi∑
k=1

A
(k)
i,q

(
ξi,q

ζq + ξi,q

)k

×

ζqeζqx + ξi,qe
−ξi,qx ((ζq + ξi,q)x)k−1

(k − 1)!
− ζqe−ξi,qx

k−2∑
j=0

((ζq + ξi,q)x)j

j!

+
1

µ
ζqe

ζqx

for Case 2.

When all the roots in Iq are distinct, the scale functions above can be simplified and have nice properties as

discussed in the following corollary.

Corollary 3.1. If all the roots in Iq are distinct, we have the followings.

(1) The scale function can be simplified to

W (q)(x) =
2

σ2%q

n∑
i=1

A
(1)
i,q

(
ξi,q

ζq + ξi,q

)[
eζqx − e−ξi,qx

]
,

W (q)(x) =
1

%q

(
−ζq
µ

+
q + λ

µ2

) n∑
i=1

A
(1)
i,q

(
ξi,q

ζq + ξi,q

)[
eζqx − e−ξi,qx

]
+

1

µ
eζqx,

for Case 1 and Case 2, respectively.

(2) W (q)′ is convex.

(3) W ′ζq is completely monotone.
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This guarantees the optimality of the barrier-strategy in view of Theorem 2.2; the optimal strategy can be

obtained by finding a unique a∗ such that W (q)′′(a∗) = 0.

Example 3.1 (Hyperexponential Case). As an important example where all the roots in Iq are distinct, we consider

the case where Z has a hyperexponential distribution with density function

f(z) =
m∑
i=1

αiηie
−ηiz, z ≥ 0,

for some 0 < η1 < · · · < ηm <∞. Its Laplace exponent (2.1) is then

ψ(s) = µs+
1

2
σ2s2 − λ

m∑
i=1

αi
s

ηi + s
.(3.9)

Notice in this case that −η1, . . . , −ηm are the poles of the Laplace exponent. Furthermore, all the roots in Iq are

distinct and satisfy the following interlacing condition for every q > 0:

(1) when σ > 0, there are m+ 1 roots −ξ1,q, . . . ,−ξm+1,q such that

0 < ξ1,q < η1 < ξ2,q < · · · < ηm < ξm+1,q <∞;

(2) when σ = 0 and µ > 0, there are m roots −ξ1,q, . . . ,−ξm,q such that

0 < ξ1,q < η1 < ξ2,q < · · · < ξm,q < ηm <∞.

The class of hyperexponential distributions is important as it is dense in the class of all positive-valued distributions

with completely monotone densities.

3.3. Approximation of the scale function of a general spectrally negative Lévy process. The scale function

obtained in Proposition 3.1 can be used to approximate the scale function of a general spectrally negative Lévy

process. By Proposition 1 of Asmussen et al. (2004), there exists, for any spectrally negative Lévy process X , a

sequence of spectrally negative Lévy processes with phase-type jumps X(n) converging to X in D[0,∞). This

is equivalent to saying that X(n)
1 → X1 in distribution by Jacod and Shiryaev (2003), Corollary VII 3.6; see also

Pistorius (2006). Suppose ψn (ψ), ζq,n (ζq) and W (q)
n /Wζq ,n (W (q)/Wζq ) are the Laplace exponent, the positive

root (2.5) and the scale function of X(n) (X), respectively. Because these processes are spectrally negative and

ψ is continuous, we have, by the continuity theorem, ψn(β + ζq,n) → ψ(β + ζq) for every β > 0. Now in

view of (2.10), the convergence of the scale function holds by the continuity theorem; see Feller (1971), Theorem

2a, XIII.1. More precisely, we have
∫
IWζq ,n(y)dy →

∫
IWζq(y)dy and

∫
IW

(q)
n (y)dy →

∫
IW

(q)(y)dy for any

interval I .
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The smoothness and monotonicity properties of the scale function can be additionally used to obtain stronger

results. The scale functions in Proposition 3.1 are in C∞(0,∞). In addition, when all the roots of Iq are different,

its first derivative W ′ζq is completely monotone as discussed in Corollary 3.1.

If the target scale function is in C1(0,∞) (which holds whenever the jump distribution has no atoms), noting

that Wζq(x) ≤ (ψ′(ζq))
−1 for every x and hence e−βxWζq(x) vanishes in the limit for any β > 0, we have by

(2.10) ∫ ∞
0

e−βxW ′ζq(x)dx =
β

ψ(β + ζq)− q
−Wζq(0), β > 0.

Because W ′ζq(x) is nonnegative and F (x) :=
∫ x

0 W
′
ζq

(y)dy/((ψ′(ζq))
−1 −Wζq(0)) is a probability distribution,

Wζq ,n(x)
n↑∞−−−→Wζq(x) and W (q)

n (x)
n↑∞−−−→W (q)(x), x ≥ 0.

Furthermore, suppose that it is in C2(0,∞) (which holds, for example, when σ > 0 by Chan et al. (2009)),

W ′ζq(0+) < ∞ (i.e., σ > 0 or Π(−∞, 0) < ∞) and W ′′ζq(x) ≤ 0 for every x ≥ 0, because W ′ζq(x)
x↑∞−−−→ 0, we

have F (x) := (W ′ζq(0+))−1
∫ x

0 |W
′′
ζq

(y)|dy is a probability distribution and∫ ∞
0

e−βxF (dx) = (W ′ζq(0+))−1

[
− β2

ψ(β + ζq)− q
+ βWζq(0) +W ′ζq(0+)

]
, β > 0.

Therefore, noting that W (q)′(x) = ζqW
(q)(x) + eζqxW ′ζq(x) and assuming that the convergent sequence Wζq ,n(x)

has the same property, we can obtain by the continuity theorem

W ′ζq ,n(x)
n↑∞−−−→W ′ζq(x) and W (q)′

n (x)
n↑∞−−−→W (q)′(x), x ≥ 0.

The negativity of W ′′ζq holds, for example, for the completely monotone jump case because W ′ζq is completely

monotone by Loeffen (2008). We can also choose the sequence W ′ζq ,n completely monotone in view of Corollary

3.1 because approximation can be done via hyperexponential distributions. In fact, it also means that Wζq is

C∞(0,∞) and the convergence of higher derivatives can be pursued. Even for a general jump distribution, the

negativity of W ′′ζq is a reasonable assumption in view of the numerical plots given by Surya (2008).

This phase-type fitting approach complements the approach by Surya (2008) where scale functions are approx-

imated by numerical Laplace inversion. A major disadvantage of using this inversion method is the fact that it

requires the exact value of the right-hand side of (2.4). However, the Laplace transform of a jump distribution does

not in general have an explicit closed-form expression. Surya (2008)’s approach, therefore, contains two types of

errors: 1) the approximation error caused while computing ψ and 2) the error caused while inverting the Laplace

transform. On the other hand, the phase-type fitting approach only contains the phase-type fitting error thanks to

the closed-form Laplace transform of the phase-type distribution.
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The phase-type fitting approach enjoys a variety of fitting algorithms typically developed in queueing analysis.

Well-known examples are the moment-matching approach (e.g. MEFIT and MEDA) and the maximum-likelihood

approach (e.g. MLAPH and EMPHT), and a thorough study of pros and cons of each fitting techniques has been

conducted in, for example, Horváth and Telek (2000) and Lang and Arthur (1996). The fitting can be applied also

to empirical data and this is another major advantage over the Laplace inversion approach.

4. SCALE FUNCTIONS FOR MEROMORPHIC LÉVY PROCESSES

In this section, we consider another class of spectrally negative Lévy processes called meromorphic Lévy pro-

cesses. We obtain their scale functions and use these as approximation tools for a general spectrally negative Lévy

process with a completely monotone Lévy measure. Similarly to the approach applied in the last section, we obtain

the scale function using its Wiener-Hopf factorization. It has a form expressed as an infinite sum of exponential

functions which can be bounded efficiently by finite sums.

4.1. Meromorphic Lévy processes. The following is due to Kuznetsov et al. (2010a), Definition 1.

Definition 4.1 (spectrally negative meromorphic Lévy process). A spectrally negative Lévy process X is said to

belong to the M-class if the following conditions hold.

(1) The Laplace exponent ψ(s) (2.1) has a countable set of real negative poles.

(2) For every q ≥ 0, the Cramér-Lundberg equation (3.3) has a countable set of real negative roots.

(3) Let {ηk; k ≥ 1} and {ξk,q; k ≥ 1}, respectively, be the sets of the absolute values of the poles and the

negative roots of (3.3) for fixed q ≥ 0. Then it satisfies the following interlacing conditions:

· · · < −ηk < −ξk,q < · · · < −η2 < −ξ2,q < −η1 < −ξ1,q < 0.

(4) There exists α > 1
2 such that ηk ∼ ckα as k →∞.

(5) The Wiener-Hopf factor (3.4) is expressed as convergent infinite products

ϕ−q (s) =
∞∏
k=1

(s+ ηk)

ηk

ξk,q
(s+ ξk,q)

.(4.1)

The M-class complements the class of Lévy processes with phase-type jumps described in the previous section

because it also contains those of infinite activity. As noted by Corollary 3 of Kuznetsov et al. (2010a), the property

(3) in Definition 4.1 is equivalent to the condition that the Lévy measure has the form (1.1). This can be seen as an

extension to the hyperexponential case as described in Example 3.1.

We consider the M-class alternatively to the “hyperexponential fitting”. When a Lévy measure is completely

monotone, approximation via hyperexponential distributions is in principle possible. However, as in, for example,
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Asmussen et al. (2007), special care is needed for the infinitesimal jumps, and one needs to approximate separately

the process with Lévy measure ν(−ε, 0) for small ε > 0. Fitting via the M-class is more tractable in the sense that

this procedure is not necessary. Although property (4) requires one to choose η’s in a certain way, the approxima-

tion for the Lévy process with a completely monotone density is still effective by choosing the value of c and α

sufficiently small. For more details, see Kuznetsov et al. (2010a).

The Wiener-Hopf factor (4.1) is again a rational function as in (3.5) for the phase-type case. Therefore, this can

be inverted again by partial fraction decomposition, and we have

P
{
−Xκq ∈ dx

}
=

∞∑
k=1

Ak,qξk,qe
−ξk,qxdx, x > 0(4.2)

where

Ak,q :=
s+ ξk,q
ξk,q

ϕ−q (s)

∣∣∣∣
s=−ξk,q

=

(
1−

ξk,q
ηk

)∏
i 6=k

1− ξk,q
ηi

1− ξk,q
ξi,q

, k ≥ 1.

Notice by the interlacing condition that Ak,q > 0 for every k ≥ 1.

4.2. Scale functions for meromorphic Lévy processes. We now obtain the scale function for the M-class. We

omit the proof because it is similar to the phase-type case; see Appendix A.1.

Lemma 4.1. For every q > 0, we have

Wζq(x)−Wζq(0) =
∞∑
k=1

Ck,q

[
1− e−(ζq+ξk,q)x

]
, x ≥ 0

where

Ck,q :=
ζq
q

ξk,qAk,q
ζq + ξk,q

, k ≥ 1.(4.3)

By (2.11) and Lemma 4.1, we have, by taking the limit,

κq :=
∞∑
k=1

Ck,q = (ψ′(ζq))
−1 −Wζq(0) <∞.(4.4)

The scale function can be therefore obtained by Lemma 4.1 and (4.4).

Proposition 4.1. For every q > 0, we have

W (q)(x) =
∞∑
i=1

Ci,q

[
eζqx − e−ξi,qx

]
+Wζq(0)eζqx = (ψ′(ζq))

−1eζqx −
∞∑
i=1

Ci,qe
−ξi,qx, x ≥ 0.(4.5)



SOLVING OPTIMAL DIVIDEND PROBLEMS VIA PHASE-TYPE FITTING APPROXIMATION OF SCALE FUNCTIONS 17

By straightforward differentiation, we have, for every q > 0 and x ≥ 0,

W (q)′(x) = (ψ′(ζq))
−1ζqe

ζqx +
∞∑
i=1

Ci,qξi,qe
−ξi,qx,

W (q)′′(x) = (ψ′(ζq))
−1(ζq)

2eζqx −
∞∑
i=1

Ci,q(ξi,q)
2e−ξi,qx.

Remark 4.1. From the derivatives above, it can be easily verified that W (q)′(·) is indeed convex. In view of

Theorem 2.1, the optimal solution to the classical dividend problem (2.3) is the unique point x such that W (q)′′(x)

vanishes or

(ψ′(ζq))
−1(ζq)

2eζqx −
∞∑
i=1

Ci,q(ξi,q)
2e−ξi,qx = 0.

As an extension to Lemma 3.1, we have the following.

Lemma 4.2. (1) The following two statements are equivalent:

(a) σ = 0 and ν(−∞, 0) =∞,

(b)
∑∞

k=1Ak,qξk,q =∞.

(2) Suppose σ > 0 or ν(−∞, 0) <∞. Then, for every q > 0, we have

ζq
q

= θ

( ∞∑
k=1

Ak,qξk,q

)−1

(4.6)

where

θ := −ζqW (q)(0) +W (q)′(0+) =

 2
σ2 , when σ > 0

− ζq
µ + q+ν(−∞,0)

µ2
, when σ = 0

 .(4.7)

4.3. Approximation of the scale functions via finite sum. The scale function obtained in Proposition 4.1 is an

infinite sum of exponential functions and in reality its exact value cannot be computed. Here, we obtain bounds

for W (q)(·), W (q)′(·) and Z(q)(·) in terms of finite sums.

For every m ≥ 1, let

A
(m)
k,q := 1{k≤m}

(
1−

ξk,q
ηk

) ∏
1≤i≤m,i 6=k

1− ξk,q
ηi

1− ξk,q
ξi,q

and C
(m)
k,q :=

ζq
q

ξk,qA
(m)
k,q

ζq + ξk,q
, k ≥ 1.

By the interlacing condition, A(m)
k,q and C(m)

k,q are all positive and, for every k ≥ 1,

A
(m)
k,q ↑ Ak,q and C

(m)
k,q ↑ Ck,q as m→∞.
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Now we define candidates for upper and lower bounds of Wζq respectively by

W
(m)
ζq (x) := (ψ′(ζq))

−1 −
m∑
i=1

C
(m)
i,q e

−(ζq+ξi,q)x,

W
(m)
ζq

(x) := W
(m)
ζq (x)− δm

[
e−ζqx + e−(ζq+ξm+1,q)x

]
,

for every m ≥ 1 and x ≥ 0, where

δm := κq −
m∑
i=1

C
(m)
i,q > 0,

which vanishes in the limit asm→∞ by (4.4). As candidates for upper and lower bounds ofW (q), we also define

W
(q,m)

(x) := eζqxW
(m)
ζq (x) and W (q,m)(x) := eζqxW

(m)
ζq

(x), x ≥ 0.

The following proposition shows that the scale functions are bounded and approximated by these functions.

Proposition 4.2. For every m ≥ 1 and x ≥ 0, we have

W
(m)
ζq

(x) ≤Wζq(x) ≤W (m)
ζq (x) and W (q,m)(x) ≤W (q)(x) ≤W (q,m)

(x).(4.8)

Furthermore, we have

W
(m)
ζq (x)

m↑∞−−−→Wζq(x) and W
(q,m)

(x)
m↑∞−−−→W (q)(x),

W
(m)
ζq

(x)
m↑∞−−−→Wζq(x) and W (q,m)(x)

m↑∞−−−→W (q)(x),

uniformly on x ∈ [0,∞).

By straightforward calculation, we can bound Z(q) in (2.8). Let, for every m ≥ 1,

Z
(q,m)

(x) := 1 + q

∫ x

0
W

(m,q)
(y)dy and Z(q,m)(x) := 1 + q

∫ x

0
W (m,q)(y)dy, x ≥ 0.

Then by Proposition 4.2, we have Z(q,m)(x) ≤ Z(q,m)(x) ≤ Z(q,m)
(x) and

0 ≤ Z(q,m)
(x)− Z(q,m)(x) = q

∫ x

0

(
W

(q,m)
(y)−W (q,m)(y)

)
dy

= qδm

∫ x

0

[
1 + e−ξm+1,qy

]
dy = qδm

[
x+

1

ξm+1,q
(1− e−ξm+1,qx)

]
.

We therefore have the following.

Corollary 4.1 (Bounds on Z(q)). We have Z(q,m)
(x)→ Z(q)(x) and Z(q,m)(x)→ Z(q)(x) as m→∞ pointwise

for every x ≥ 0.
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We now obtain bounds for the derivative. Define, for every x > 0,

w(m)(x) := (ψ′(ζq))
−1ζqe

ζqx +
m∑
i=1

C
(m)
i,q ξi,qe

−ξi,qx,

w(m)(x) := w(m)(x) +

[
max

1≤k≤m
(ξk,qe

−ξk,qx) + max
k≥m+1

(ξk,qe
−ξk,qx)

]
δm.

Here notice that

max
k≥m+1

(ξk,qe
−ξk,qx) =

 1
x , ξm+1,q ≤ 1

x ,

ξm+1,qe
−ξm+1,qx, ξm+1,q >

1
x .

Proposition 4.3. For every m ≥ 1, we have

w(m)(x) ≤W (q)′(x) ≤ w(m)(x), x ≥ 0.

Furthermore, we have w(m)(x)→W (q)′(x) and w(m)(x)→W (q)′(x) uniformly on x ≥ x0 for any x0 > 0.

A stronger result holds when σ > 0 or ν(−∞, 0) < ∞. Recall in this case that θ < ∞ by Lemma 4.2 (2) and

hence we can define

εm := θ − ζq
q

m∑
i=1

ξi,qA
(m)
i,q > 0, m ≥ 1,

which vanishes in the limit as m→∞ by Lemma 4.2 (2).

Corollary 4.2. When σ > 0 or ν(−∞, 0) <∞, we have

w(m)(x) ≤W (q)′(x) ≤ w(m)(x) ∧ w̃(m)(x), x > 0

where

w̃(m)(x) := w(m)(x) + max
1≤k≤m

(ξk,qe
−ξk,qx)δm + e−ξm+1,qxεm.

The bounds obtained above on the derivative of the scale function can be used to obtain bounds on the value

functions and optimal barriers. For simplicity, letw and w be the lower and upper bounds forW (q)′ obtained above

and let

w∗ = min
x≥0

w(x) and w∗ = min
x≥0

w(x).

Clearly, w and w are convex because w(m), w(m) and w̃(m) are for every fixed m ≥ 1.
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Remark 4.2 (classical dividend problem). Because w and w are convex, we have w∗ ≤ W (q)′(a∗) ≤ w∗ and we

have

W
(q,m)

(x)− δm(1 + e−ξm,qx)

w∗
≤ ua∗(x) ≤ W

(q,m)
(x)

w∗
.

Furthermore, the optimal barrier must lie in the following interval:

a∗ ∈ {x ≥ 0 : w(x) ≤ w∗} .

Remark 4.3 (bail-out problem). For the bail-out problem, recall that the optimal barrier is the minimum value of

a such that G(a) becomes negative (see (2.16)). We can obtain its bounds simply by

G(a) := [ϕZ(q,m)(a)− 1]w(a)− ϕqW (q,m)
(a)2 and G(a) := [ϕZ

(q,m)
(a)− 1]w(a)− ϕqW (q,m)(a)2.

We can therefore obtain the bounds on the optimal barrier level d∗; we have d∗ ≤ d∗ ≤ d∗ where

d∗ := inf {a > 0 : G(a) ≤ 0} and d
∗

:= inf
{
a > 0 : G(a) ≤ 0

}
.

5. NUMERICAL EXAMPLES

We conclude this paper by illustrating numerically the effectiveness of the phase-type fitting approximation for

a general spectrally negative Lévy process. First, we use the classical hyperexponential fitting algorithm for a com-

pletely monotone density function by Feldmann and Whitt (1998) and approximate, as an example, the scale func-

tion and solutions for the case with a (Brownian motion plus) compound Poisson with Weibull-distributed jumps.

Second, we consider, as an example of the meromorphic Lévy process, the β-family introduced by Kuznetsov

(2009a) and extend the results to the spectrally negative version of the CGMY process.

5.1. Brownian motion plus compound Poisson process with Weibull-distributed jumps. As noted earlier,

any spectrally negative Lévy process with a completely monotone Lévy measure can be approximated arbitrarily

closely by fitting hyperexponential distributions. Here, we use the fitted data computed by Feldmann and Whitt

(1998) to approximate the scale function when it is a Brownian motion plus a compound Poisson process with i.i.d.

Weibull-distributed jumps. Recall that the Weibull distribution with parameters c and a (Weibull(c,a)) is give by

F (t) = 1− e−(t/a)c , t ≥ 0.

If c < 1, it has long-tails, or eδt(1−F (t))→∞ as t→∞ for any δ > 0, and has a completely monotone density.

Feldmann and Whitt (1998) constructed a recursive algorithm to approximate completely monotone densities

in terms of hyperexponential densities. We use their results and compute the scale functions of spectrally negative

Lévy processes with Weibull-distributed jumps.
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i αi ηi i αi ηi

1 0.029931 676.178 4 0.476233 0.76100

2 0.093283 38.7090 5 0.068340 0.24800

3 0.332195 4.27400 6 0.000018 0.09700
TABLE 1. Parameters of the hyperexponential distribution fitted to Weibull(0.6,0.665) (taken

from Tables 3 of Feldmann and Whitt (1998)).

Table 1 shows the parameters of the hyperexponential distribution fitted to Weibull(0.6,0.665) when m = 6. As

can be seen in Figure 4 of Feldmann and Whitt (1998), this fitting is very accurate. We consider the Lévy process

in the form (3.1) where Z is hyperexponential specified in Table 1 as an approximation to Weibull(0.6,0.665). We

use various values of σ with the common values of λ = 1, µ = 0.1 and q = 0.03. The roots ξ·,q’s and ζq are

calculated via the bisection method with error bound 1.0E − 10.

Figure 1 shows the scale function W (q) and its derivative W (q)′ . The optimal barrier levels that minimize W (q)′

are given by a∗ = 0.05, 0.481 and 0.643 for the cases σ = 0, 0.2 and 0.4, respectively. The results are consistent

with Lemma 2.2; with the existence of a diffusion component, the scale function is forced to converge to 0 as x

goes to 0. Using these barrier levels, optimal value functions for the classical dividend problem can be computed

by Theorem 2.1. Figure 2 shows the value functions vπa∗ . Notice that they are monotonically decreasing in σ.
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FIGURE 1. Scale functions and their derivatives for the case with Weibull-distributed jumps.
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FIGURE 2. Value function vπa∗of the classical dividend problem.

We now consider the extensions described in the end of Section 2. Here we use the same parameters as in the

results above. Figure 3 shows the results on the bail-out problem (Avram et al., 2007) when ϕ = 1.3. It plots G

in (2.16) as well as the value function vd∗ in (2.17). Here the optimal barrier level is obtained by computing the

unique level d∗ that satisfies G(d∗) = 0. Figure 4 shows the results on the extension with terminal values at ruin

(Loeffen and Renaud, 2010) with the plots of F in (2.18) and the value function ṽb∗ in (2.19). We consider the case

with constant terminal value (i) S = −1 and K = 0 and (ii) S = 1 and K = 0. The maximizer of F becomes the

barrier level b∗. Figure 5 shows the value functions vc∗2 on the extension with transaction costs (Loeffen, 2009b)

when (i) δ = 0.5 and (ii) δ = 0.1. In order to obtain the optimal impulse contol (c∗1, c
∗
2), we use the technique

discussed in Section 4 of Loeffen (2009b). Unlike the other results, the value functions are no longer monotone

in σ unless δ is sufficiently small. However, as δ decreases to zero, c∗1 converges to c∗2 and the value function

converges to that of the classical model as shown in Figure 2.

5.2. Numerical results on the β-class and CGMY process. We now consider, as an example of meromorphic

Lévy processes, the β-class introduced by Kuznetsov (2009a). The following definition is due to Kuznetsov

(2009a), Definition 4.

Definition 5.1. A spectrally negative Lévy process is said to be in the β-class if its Lévy measure is in the form

ν(dx) = c
eαβx

(1− eβx)λ
1{x<0}dx, x ∈ R,(5.1)

for some α > 0, β > 0, c ≥ 0 and λ ∈ (0, 3). It is equivalent to saying that its Laplace exponent is

ψ(z) = µ̂z +
1

2
σ2z2 +

c

β

{
B(α+

z

β
, 1− λ)−B(α, 1− λ)

}
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FIGURE 3. Bail-out problem: G in (2.16) and the value function vd∗ when ϕ = 1.3.

Optimal barriers are 0.38, 0.775 and 1.495 for σ = 0, 0.2 and 0.4, respectively.

where B is the beta function B(x, y) := Γ(x)Γ(y)/Γ(x+ y).

The special case σ = 0 and β = 1 reduces to the class of Lamperti-stable processes, which are obtained by

the Lamperti transformation (Lamperti (1972)) from the stable processes conditioned to stay positive; see Bertoin

and Yor (2001) and Caballero et al. (2008) and references therein. For the scale function of a related process, see

Kyprianou and Rivero (2008).

It can be also seen that this is a “discrete-version” of the (spectrally negative) CGMY process, whose Lévy

measure is given by

ν(dx) = c
eαx

|x|λ
1{x<0}dx, x ∈ R.(5.2)

Indeed, if we set c = c̃βλ and α = α̃β−1 in (5.1), we have

c
eαβx

(1− eβx)λ
1{x<0}

β↓0−−→ c̃
eα̃x

|x|λ
1{x<0}, x ∈ R.(5.3)

See Asmussen et al. (2007) for approximation of (double-sided) CGMY processes using hyperexponential distri-

butions.

We shall use the results in Section 4 to obtain the bounds on the scale functions and the solutions to the classical

optimal dividend problem. Figure 6 shows the approximation results when q = 0.03, σ = 0.2, µ̂ = 0.1, λ = 1.5,

α = 3, β = 1 and c = 0.1 in (5.1). We plot, for m = 15 and m = 150, the upper and lower bounds on the scale
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FIGURE 4. Extension with terminal values at ruin: F in (2.18) and the value function ṽb∗

when (i) S = −1, K = 0 and (ii) S = 1, K = 0. The optimal barriers are (i) 0.0628,

0.0793 and 0.1384 and (ii) 0.0317, 0.0383 and 0.0955, respectively, for σ = 0, 0.2 and

0.4.

function, its derivative and the function ua∗ defined in (2.14). As shown in the previous section, the difference

between the upper and lower bounds indeed converges to zero.
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FIGURE 5. Extension with transaction costs: value function when (i) β = 0.5 and (ii)

β = 0.1. The optimal impulse controls (c∗1, c
∗
2) are (i) (0, 1.173), (0.069, 1.527) and

(0, 1.885) and (ii) (0, 0.05), (0.222, 0.481) and (0.197, 0.643) for σ = 0, 0.2 and 0.4,

respectively.

We now take β in (5.3) to zero and see how the approximation for the CGMY process works. Here we set α̃ = 3

and c̃ = 0.1 and use the same values as the above for the other parameters. Figure 7 shows the upper and lower

bounds of scale function and its derivative for various values of β. Figure 8 shows the mean value of the upper

and lower bounds on the function u. Here we can indeed observe the convergence as β → 0. This implies that it

effectively approximates the scale function and the solution for the CGMY case.

APPENDIX A. PROOFS

A.1. Proof of Lemmas 3.1 and 3.2. By (3.6), it is easy to verify that

Ex
[
e−qτa1{τa<∞}

]
=

n∑
i=1

mi∑
k=1

A
(k)
i,q ξi,q

∫ ∞
x−a

(ξi,qy)k−1

(k − 1)!
e−ξi,qydy, 0 ≤ a < x,

and hence, because W (q) ∈ C1(0,∞),

∂

∂a
Ex
[
e−qτa1{τa<∞}

]
=

n∑
i=1

mi∑
k=1

A
(k)
i,q ξi,q

(ξi,q(x− a))k−1

(k − 1)!
e−ξi,q(x−a), 0 ≤ a < x,(A.1)

∂

∂x
Ex
[
e−qτ01{τ0<∞}

]∣∣∣∣
x=0+

= −
n∑
i=1

A
(1)
i,q ξi,q.(A.2)
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FIGURE 6. Approximation of the scale function and its derivative for the β-class.
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FIGURE 7. Convergence of scale functions to the CGMY model.

In fact, different representations of (A.1) and (A.2) can be pursued. By Theorem 8.1 of Kyprianou (2006) and

(2.9),

Ex
[
e−qτa1{τa<∞}

]
= Z(q)(x− a)− q

ζq
W (q)(x− a) = 1 + q

∫ x−a

0
W (q)(y)dy − q

ζq
eζq(x−a)Wζq(x− a)
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FIGURE 8. Convergence of u to the CGMY model. Here we use M = 150.

for every 0 ≤ a < x. Its derivative with respect to a becomes

∂

∂a
Ex
[
e−qτa1{τa<∞}

]
= −qW (q)(x− a) + qeζq(x−a)Wζq(x− a) +

q

ζq
eζq(x−a)W ′ζq(x− a)

=
q

ζq
eζq(x−a)W ′ζq(x− a).

(A.3)

In particular, when a = 0, the derivative with respect to x and its limit as x→ 0 are

∂

∂x
Ex
[
e−qτ01{τ0<∞}

]
= − q

ζq

[
−ζqW (q)(x) +W (q)′(x)

]
x↓0+−−−→ − q

ζq

[
−ζqW (q)(0) +W (q)′(0+)

]
= − q

ζq
θ.

(A.4)

By matching (A.2) and (A.4), Lemma 3.1 is immediate.

For the proof of Lemma 3.2, by matching (A.1) and (A.3) and using Lemma 3.1, we have

W ′ζq(y) =
θ

%q

n∑
i=1

mi∑
k=1

A
(k)
i,q ξi,q

(ξi,qy)k−1

(k − 1)!
e−(ζq+ξi,q)y

=
θ

%q

n∑
i=1

mi∑
k=1

A
(k)
i,q (ζq + ξi,q)

(
ξi,q

ζq + ξi,q

)k ((ζq + ξi,q)y)k−1

(k − 1)!
e−(ζq+ξi,q)y, y ≥ 0.



SOLVING OPTIMAL DIVIDEND PROBLEMS VIA PHASE-TYPE FITTING APPROXIMATION OF SCALE FUNCTIONS 29

Integrating the above and changing variables, we have

Wζq(x)−Wζq(0) =
θ

%q

n∑
i=1

mi∑
k=1

A
(k)
i,q

(
ξi,q

ζq + ξi,q

)k 1

(k − 1)!

∫ (ζq+ξi,q)x

0
zk−1e−zdz, x ≥ 0.

Lemma 3.2 is now immediate because the integral part is a lower incomplete gamma function.

A.2. Proof of Proposition 4.2. Notice, for every m ≥ 1, that

0 ≤
m∑
k=1

(
Ck,q − C

(m)
k,q

)
≤ κq −

m∑
k=1

C
(m)
k,q = δm,

0 ≤
∞∑

k=m+1

Ck,q = κq −
m∑
k=1

Ck,q ≤ κq −
m∑
k=1

C
(m)
k,q = δm,

(A.5)

and hence by (A.5)

0 ≤W (m)
ζq (x)−Wζq(x) =

m∑
k=1

(
Ck,q − C

(m)
k,q

)
e−(ζq+ξi,q)x +

∞∑
k=m+1

Ck,qe
−(ζq+ξk,q)x

≤ e−ζqx
m∑
k=1

(
Ck,q − C

(m)
k,q

)
+ e−(ζq+ξm+1,q)x

∞∑
k=m+1

Ck,q ≤ δm
[
e−ζqx + e−(ζq+ξm+1,q)x

]
.

Therefore we have the bounds for Wζq in (4.8). The bounds for W (q) are immediate by multiplying eζqx. Finally,

the convergence results hold because δm → 0 and e−ζqx+e−(ζq+ξm+1,q)x and 1+e−ξm+1,qx are bounded uniformly

in x ≥ 0.

A.3. Proof of Proposition 4.3. The lower bound is immediate by the fact that 0 ≤ C(m)
i,q ≤ Ci,q. For every x ≥ 0,

we have by (A.5)

W (q)′(x) = (ψ′(ζq))
−1ζqe

ζqx +
∞∑
i=1

Ci,qξi,qe
−ξi,qx

= w(m)(x) +
m∑
i=1

(Ci,q − C(m)
i,q )ξi,qe

−ξi,qx +
∞∑

i=m+1

Ci,qξi,qe
−ξi,qx

≤ w(m)(x) + max
1≤k≤m

(ξk,qe
−ξk,qx)

m∑
i=1

(Ci,q − C(m)
i,q ) + max

k≥m+1
(ξk,qe

−ξk,qx)

∞∑
i=m+1

Ci,q

≤ w(m)(x) +

[
max

1≤k≤m
(ξk,qe

−ξk,qx) + max
k≥m+1

(ξk,qe
−ξk,qx)

]
δm = w(m)(x),

which shows the first claim. For the second claim, notice that for the given x0 > 0,

0 ≤ w(m)(x)− w(m)(x) ≤
[

max
1≤k≤m

(ξk,qe
−ξk,qx0) + max

k≥m+1
(ξk,qe

−ξk,qx0)

]
δm

uniformly on [x0,∞). Because δm vanishes as m→ 0 and supλ≥0 λe
−λx <∞, the convergence is immediate.
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A.4. Proof of Corollary 4.2. We have

W (q)′(x) = w(m)(x) +
m∑
i=1

(Ci,q − C(m)
i,q )ξi,qe

−ξi,qx +
∞∑

i=m+1

Ci,qξi,qe
−ξi,qx

≤ w(m)(x) + max
1≤k≤m

(ξk,qe
−ξk,qx)

m∑
i=1

(Ci,q − C(m)
i,q ) +

ζq
q
e−ξm+1,qx

∞∑
i=m+1

Ai,qξi,q

≤ w(m)(x) + max
1≤k≤m

(ξk,qe
−ξk,qx)δm + εme

−ξm+1,qx

where the last inequality holds because

ζq
q

∞∑
k=m+1

ξi,qAi,q = θ − ζq
q

m∑
k=1

ξi,qAi,q ≤ θ −
ζq
q

m∑
k=1

ξi,qA
(m)
i,q = εm, m ≥ 1.

This together with Proposition 4.3 shows the claim.
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Carr, P., Hélyette, G., Madan, D. B., and Yor, M. (2002). The structure of asset returns: an emperical investigation.

Journal of Business, 75:305–332.

Chan, T., Kyprianou, A., and Savov, M. (2009). Smoothness of scale functions for spectrally negative Lévy
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preprint.

Kuznetsov, A., Kyprianou, A., and Pardo, J. (2010a). Meromorphic Lévy processes and their fluctuation identities.
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