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ON SCALE FUNCTIONS OF SPECTRALLY NEGATIVE LÉVY PROCESSES WITH
PHASE-TYPE JUMPS

MASAHIKO EGAMI AND KAZUTOSHI YAMAZAKI

ABSTRACT. We study the scale function for the class of spectrally negative Lévy processes with phase-

type jumps. We consider both the compound Poisson case and the unbounded variation case with diffusion

components, and obtain the corresponding scale functions explicitly. Motivated by the fact that the class

of phase-type distributions is dense in the class of all positive-valued distributions, we propose a new ap-

proach to approximating the scale function for a general spectrally negative Lévy process. We illustrate,

in numerical examples, its effectiveness by obtaining the scale functions for Lévy processes with long-tail

distributed jumps.
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1. INTRODUCTION

Defined on a probability space (Ω,F ,P), let X = {Xt; t ≥ 0} be a spectrally negative Lévy process of the

form

(1.1) Xt −X0 = µt+ σBt −
Nt∑
n=1

Zn, 0 ≤ t <∞,

for some µ ∈ R and σ ≥ 0. Here B = {Bt; t ≥ 0} is a standard Brownian motion, N = {Nt; t ≥ 0} is a Poisson

process with arrival rate λ, and Z = {Zn;n = 1, 2, . . .} is an i.i.d. sequence of non-negative random variables with

density function f(·). These processes are assumed independent. Let Px be the (conditional) probability measure

under which X0 = x and we also let P ≡ P0. Its Laplace exponent is then

ψ(s) := logE
[
esX1

]
= µs+

1

2
σ2s2 + λ

∫ ∞
0

(e−sz − 1)f(z)dz, s ∈ C.(1.2)
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Associated with every spectrally negative Lévy process, there exists a (q-)scale function

W (q) : [0,∞) 7→ R, q ≥ 0

that uniquely solves ∫ ∞
0

e−βxW (q)(x)dx =
1

ψ(β)− q
, β > ζq(1.3)

where

ζq := sup{s ≥ 0 : ψ(s) = q}, q ≥ 0.(1.4)

As can be seen in the work of, for example, Bertoin [7, 8], Chaumont [14] and Kyprianou [21], many fluctuation

identities concerning spectrally negative Lévy processes can be expressed in terms of scale functions. There

are naturally numerous applications in applied probability including, for example, optimal stopping, queuing,

branching processes, insurance and credit risk. See Hubalek and Kyprianou [17] and references therein for detailed

historical facts and applications of scale functions.

In this paper, we obtain the scale function for the class of Lévy processes with phase-type jumps, or Lévy pro-

cesses in the form (1.1) with Z having phase-type distributions. Consider a continuous-time Markov chain with

some initial distribution and state space consisting of a single absorbing state and a finite number of transient

states. The phase-type distribution is the distribution of the time to absorption. The class of phase-type distribu-

tions includes, for example, the exponential, hyperexponential, Erlang and Coxian distributions; see Section 3 of

Asmussen [2].

The phase-type distribution is important owing to its denseness in the class of all positive-valued distributions;

see Asmussen [1]. By taking advantage of this fact, it is possible to approximate any distribution arbitrarily closely

by phase-type distributions. There are a number of existing algorithms for fitting phase-type distributions to a

large class of distributions; see, for example, Asmussen [1] for an EM algorithm and Bladt et al. [9] for a Markov

chain Monte Carlo approach. Feldmann and Whitt [16] showed that completely monotone distributions, including

long-tail distributions such as the Pareto and Weibull distributions, can be approximated by hyperexponential

distributions, and then proposed an algorithm for fitting hyperexponential distributions to completely monotone

distributions. We revisit their work in Section 5.

The class of spectrally negative Lévy processes with phase-type jumps is consequently dense in the class of

all spectrally negative Lévy processes as addressed in Proposition 1 of Asmussen et al. [3]. Therefore, at least in

principle, the scale function of any spectrally negative Lévy process can be approximated arbitrarily closely by

fitting scale functions of Lévy processes with phase-type jumps.
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This will be an important tool in applied probability, particularly, in mathematical finance. There have been

a number of attempts to introduce jumps to modify the classical Black-Scholes model, which fails to incorporate

real-life phenomena such as the volatility smile. Numerous jump types have been considered; examples include the

Gaussian model (Merton [24]), the variance-gamma model (Madan et al. [23]), the (generalized) hyperbolic model

(Barndorff-Nielsen and Shephard [5]), the normal inverse Gaussian model (Barndorff-Nielsen [4]), the exponential

jump diffusion model (Kou and Wang [19, 20]) and the hyperexponential model (Cai [10, 11] and Cai and Kou

[12]). Finally, the phase-type model was introduced by Asmussen et al. [3]. The scale functions for these processes

can be either obtained or approximated by the results discussed in this paper.

Scale functions for spectrally negative Lévy processes in general do not admit closed-form expressions. Typi-

cally, in order to obtain scale functions, one needs to rely on numerical methods. Surya [25] discusses the Laplace

inversion algorithm of (1.3) using the Esscher transform. There are, however, a few cases where explicit expres-

sions can be obtained (see Hubalek and Kyprianou [17]), and some analytical properties such as smoothness have

been obtained by, for example, Chan et al. [13]. Egami and Yamazaki [15] obtained the scale function for the

exponential jump diffusion process by combining the results by Kou and Wang [20] and some fluctuation identities

for spectrally negative Lévy processes. In this paper, we generalize their results to obtain the scale function for the

general class of Lévy processes with phase-type jumps.

The rest of the paper is organized as in the following. Section 2 considers the spectrally negative Lévy process

with phase-type jumps, and then reviews the results by Asmussen et al. [3]. We obtain the scale function for the

class of these processes in Section 3, and express it via matrix inversion and address a few examples in Section

4. Section 5 illustrates numerically the approximation of the scale function of a general spectrally negative Lévy

process, using examples where jumps are Weibull and Pareto distributed.

2. SPECTRALLY NEGATIVE LÉVY PROCESSES WITH PHASE-TYPE JUMPS

We describe in this section the class of spectrally negative Lévy processes with phase-type jumps. We summarize

the results from Asmussen et al. [3], focusing on the case when the jumps are only downward (spectrally negative).

The main purpose of this section is to present an explicit expression of the Laplace transform

Ex
[
e−qτa1{τa<∞}

]
, q > 0(2.1)

of the first passage (or down-crossing) time,

τa := inf {t ≥ 0 : Xt ≤ a} , 0 ≤ a < x,(2.2)



4 M. EGAMI AND K. YAMAZAKI

in terms of the negative roots of the Cramér-Lundberg equation,

ψ(s) = q, q > 0.(2.3)

The representation is obtained in Proposition 2.1, and the main idea is to combine it with another representation

we address in the next section in order to obtain the scale functions.

2.1. Phase-type distributions. Consider a continuous-time Markov chain Y = {Yt; t ≥ 0} with finite state space

{1, . . . ,m} ∪ {∆} where 1, . . . ,m are transient and ∆ is absorbing. Its initial distribution is given by a simplex

α = [α1, . . . , αm] such that αi = P {Y0 = i} for every i = 1, . . . ,m. The intensity matrix Q is partitioned into

the m transient states and the absorbing state ∆, and is given by

Q :=

T t

0 0

 .
Here T is an m ×m-matrix called the phase-type generator, and t = −T1 where 1 = (1, . . . , 1)′ (because each

row sums up to zero).

A distribution is called phase-type with representation (m,α,T ) if it is the distribution of the absorption time

to ∆ in the Markov chain described above. It is known that T is non-singular and thus invertible; see Asmussen

[1]. Its cumulative distribution function (cdf) and probability density function (pdf) are given, respectively, by

F (z) = 1−αeT z1 and f(z) = αeT zt, z ≥ 0.

Furthermore, the nth-moment for every n ≥ 1 is∫ ∞
0

znf(z)dz = (−1)nn!αT−n1,

and the Laplace transform is

f̂ [s] :=

∫ ∞
0

e−szf(z)dz = α(sI − T )−1t,

which is analytic for every s ∈ C except for the eigenvalues of T ; see Proposition 4.1 of Asmussen et al. [3].

Although a representation (m,α,T ) for a phase-type distribution may not be unique, there exists at least one

minimal representation whose definition is given below.

Definition 2.1 (minimality). A representation (m,α,T ) for a distribution function F is called minimal if there

exists no number k < m, k-vector b and k × k-matrixG such that F (x) = 1− beGx1 for every x ≥ 0.

We address, in Section 4, that under the minimality condition (and another minor condition), scale functions can

be obtained easily via matrix inversion.
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2.2. Spectrally negative Lévy processes with phase-type jumps. We now consider the process X in the form

(1.1) with Z being an i.i.d. sequence of phase-type distributed random variables with representation (m,α,T ). Its

Laplace exponent (1.2) becomes

ψ(s) = µs+
1

2
σ2s2 + λ

(
f̂ [s]− 1

)
= µs+

1

2
σ2s2 + λ

(
α(sI − T )−1t− 1

)
,(2.4)

which is analytic for every s ∈ C except for the engenvalues of T . We disregard the case when X is a negative

subordinator (i.e. it is non-increasing a.s.), and consider the following two cases:

Case 1: when σ > 0 (i.e. X has unbounded variation),

Case 2: when σ = 0 and µ > 0 (i.e. X is a compound Poisson process).

Notice, in Case 2, that we can write Xt = Ut −
∑Nt

n=1 Zn where Ut = x + µt is a (positive) subordinator. This

implies that down-crossing of a threshold can occur only by jumps; see, for example, Chapter III of Bertoin [7].

On the other hand, in Case 1, down-crossing can occur also by creeping downward (by the diffusion components).

We need to handle each case separately due to this difference.

Fix q > 0. Consider the Cramér-Lundberg equation (2.3) and define the set of (the absolute values of) negative

roots:

Iq := {i : ψ(−ξi,q) = q and R(ξi,q) > 0} .

Furthermore, consider the equation q/(q − ψ(s)) = 0 and define the set of singularities:

Jq :=

{
j :

q

q − ψ(−ηj)
= 0 and R(ηj) > 0

}
.

The elements in Iq and Jq may not be distinct, and, in this case, we take each as many times as its multiplicity. By

Lemma 1-(1) of Asmussen et al. [3], we have

|Iq| =

 |Jq|+ 1, for Case 1,

|Jq|, for Case 2.

In particular, if the representation is minimal, we have |Iq| = m+ 1 and |Jq| = m, for Case 1

|Iq| = m and |Jq| = m, for Case 2

 ,(2.5)

and hence we can set Iq = {1, . . . ,m+ 1} and Jq = {1, . . . ,m} for Case 1, and Iq = Jq = {1, . . . ,m} for Case

2.
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2.3. First passage time. Let κq be an independent exponential random variable with parameter q > 0 and denote

the running maximum and minimum, respectively, by

Xt = sup
0≤s≤t

Xs and Xt = inf
0≤s≤t

Xs, t ≥ 0.

For every q > 0, the Wiener-Hopf factorization states that

q

q − ψ(s)
= ϕ+

q (s) ϕ−q (s)

for every s ∈ C such thatR(s) = 0, with the Wiener-Hopf factors

ϕ−q (s) := E
[
exp(sXκq)

]
and ϕ+

q (s) := E
[
exp(sXκq)

]
that are analytic for s withR(s) > 0 andR(s) < 0, respectively.

Owing to Lemma 1 of Asmussen et al. [3], we can obtain the Laplace transform of the first passage time (2.1)

explicitly. We have, for every s such thatR(s) > 0,

ϕ−q (s) =

∏
j∈Jq(s+ ηj)∏

j∈Jq ηj

∏
i∈Iq ξi,q∏

i∈Iq(s+ ξi,q)
,

from which we can obtain the distribution of Xκq by the Laplace inverse via partial fraction expansion. When all

the roots in Iq are distinct, we can write

P
{
−Xκq ∈ dx

}
=
∑
i∈Iq

Ai,qξi,qe
−ξi,qxdx, x > 0(2.6)

where {Ai,q; i ∈ Iq} are the partial fraction coefficients of the expansion,

ϕ−q (s)− ϕ−q (∞) =
∑
i∈Iq

Ai,q
ξi,q

ξi,q + s
;

see Lemma 1 of Asmussen et al. [3]. This can be handled also in the case when the roots are not all distinct. As in

Remark 4 of Asmussen et al. [3], let n denote the number of different roots in Iq and mi denote the multiplicity of

a root ξi,q. Then we have

P
{
−Xκq ∈ dx

}
=

n∑
i=1

mi∑
k=1

A
(k)
i,q ξi,q

(ξi,qx)k−1

(k − 1)!
e−ξi,qxdx, x > 0(2.7)

where

A
(k)
i,q :=

1

(mi − k)!

∂mi−k

∂smi−k
ϕ−q (s)(s+ ξi,q)

mi

ξki,q

∣∣∣∣∣
s=−ξi,q

.

Now we obtain the Laplace transform of the first passage time (2.1). Notice that, for every 0 ≤ a < x,

Ex[e−qτa1{τa<∞}] = E[e−qτa−x1{τa−x<∞}] = P {τa−x < κq} = P
{
Xκq < a− x

}
= P

{
−Xκq > x− a

}
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where the second equality is obtained by conditioning on the value of τa−x (with the independence of κq and X).

This together with (2.6) and (2.7) shows the following.

Proposition 2.1. We have, for every 0 ≤ a < x,

Ex
[
e−qτa1{τa<∞}

]
=

n∑
i=1

mi∑
k=1

A
(k)
i,q ξi,q

∫ ∞
x−a

(ξi,qy)k−1

(k − 1)!
e−ξi,qydy

and, in particular, when the roots are all distinct, we have

Ex
[
e−qτa1{τa<∞}

]
=
∑
i∈Iq

Ai,qe
−ξi,q(x−a).

Remark 2.1. Note that, for later use, we have

∂

∂a
Ex
[
e−qτa1{τa<∞}

]
=

n∑
i=1

mi∑
k=1

A
(k)
i,q ξi,q

(ξi,q(x− a))k−1

(k − 1)!
e−ξi,q(x−a), 0 ≤ a < x,(2.8)

∂

∂x
Ex
[
e−qτ01{τ0<∞}

]∣∣∣∣
x=0+

= −
n∑
i=1

A
(1)
i,q ξi,q(2.9)

where, in particular, when the roots are all distinct, we have

∂

∂a
Ex
[
e−qτa1{τa<∞}

]
=
∑
i∈Iq

Ai,qξi,qe
−ξi,q(x−a), 0 ≤ a < x,(2.10)

∂

∂x
Ex
[
e−qτ01{τ0<∞}

]∣∣∣∣
x=0+

= −
∑
i∈Iq

Ai,qξi,q.(2.11)

3. SCALE FUNCTIONS FOR LÉVY PROCESSES WITH PHASE-TYPE JUMPS

In this section, we obtain another representation of the Laplace transform of the first passage time (2.1) in terms

of the scale function and the unique positive root ζq as in (1.4) of the Cramér-Lundberg equation (2.3). It is then

combined with the result in the previous section to obtain the scale function. For a comprehensive account of scale

functions, see, for example, Bertoin [7, 8], Kyprianou [21] and Kyprianou and Surya [22].

3.1. The Laplace transform of the first passage time in terms of scale functions. We begin with basic proper-

ties of the scale function. Recall that τa is the first down-crossing time of threshold a as defined in (2.2). We also

define the first up-crossing time by

τ+b := inf {t ≥ 0 : Xt ≥ b} , 0 ≤ x < b.

Then we have, for every q ≥ 0 and 0 ≤ x < b,

Ex
[
e−qτ

+
b 1{τ+b <τ0}

]
=
W (q)(x)

W (q)(b)
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and

Ex
[
e−qτ01{τ+b >τ0}

]
= Z(q)(x)− Z(q)(b)

W (q)(x)

W (q)(b)
(3.1)

where

Z(q)(x) = 1 + q

∫ x

0
W (q)(y)dy, x ≥ 0.

Here, as in the last section, we disregard the case when X is a negative subordinator.

As an extension to (3.1), we have the following (see Theorem 8.1 of Kyprianou [21]).

Lemma 3.1. For every q > 0 and 0 ≤ a < x, we have

Ex
[
e−qτa1{τa<∞}

]
= Z(q)(x− a)− q

ζq
W (q)(x− a).

The following lemma, taken from Corollary 8.3 of Kyprianou [21], implies that the scale function is continuous

at q = 0 for every fixed x ≥ 0. Because of the continuity at q = 0, we can obtain the scale function for q = 0 by

taking the limit as q → 0; see Subsection 3.4.

Lemma 3.2. For each x ≥ 0, the function q →W (q)(x) may be analytically extended to q ∈ C.

As is discussed in Kyprianou [21] and Surya [25], there exists a “version” of the scale function Wζq =

{Wζq(x);x ≥ 0} that satisfies, for every fixed q ≥ 0,

W (q)(x) = eζqxWζq(x), x ≥ 0(3.2)

and ∫ ∞
0

e−βxWζq(x)dx =
1

ψ(β + ζq)− q
, β > 0.(3.3)

Suppose Pc is the probability measure defined by the Esscher transform

dPc
dP

∣∣∣∣
Ft

= ecXt−ψ(c)t, t ≥ 0

where c > 0 is arbitrary and {Ft; t ≥ 0} is the filtration generated by X; see page 78 of Kyprianou [21]. Then

Wζq under Pζq is analogous to W (0) under P. Furthermore, it is known that

Wζq(x) ∼ (ψ′(ζq))
−1 as x→∞,

and hence the scale function W (q) increases exponentially in x;

W (q)(x) ∼ eζqx

ψ′(ζq)
as x→∞.(3.4)
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Due to the fact that Wζq does not explode for large x as opposed to W (q), it is often convenient to deal with Wζq

and use (3.2) to convert it to W (q), especially when numerical computations are involved; see Surya [25]. In this

paper, we obtain both Wζq and W (q).

3.2. Asymptotic behaviors at zero. We now pursue additional properties of the scale function focusing on spec-

trally negative Lévy processes with phase-type jumps. It has been shown by Chan et al. [13] that if a Lévy process

has a Gaussian component, we have W (q) ∈ C2(0,∞). When it does not have a Gaussian component and if its

jump distribution has no atoms, we haveW (q) ∈ C1(0,∞). Therefore the scale function considered here is at least

in C1(0,∞).

We use the asymptotic behaviors of the scale function in the neighborhood of zero, which can be found in, for

example, Lemmas 4.3 and 4.4 of Kyprianou and Surya [22].

Lemma 3.3. For every q ≥ 0, we have

W (q)(0) =

 0, for Case 1
1
µ , for Case 2

 and W (q)′(0+) =

 2
σ2 , for Case 1
q+λ
µ2
, for Case 2

 .

Lemma 3.1 and (3.2) imply that, for every q > 0,

Ex
[
e−qτa1{τa<∞}

]
= 1 + q

∫ x−a

0
W (q)(y)dy − q

ζq
eζq(x−a)Wζq(x− a).

Because W (q) ∈ C1(0,∞), its derivative with respect to a becomes

∂

∂a
Ex
[
e−qτa1{τa<∞}

]
= −qW (q)(x− a) + qeζq(x−a)Wζq(x− a) +

q

ζq
eζq(x−a)W ′ζq(x− a)

=
q

ζq
eζq(x−a)W ′ζq(x− a).

On the other hand, when a = 0, the derivative with respect to x and its limit as x→ 0 are

∂

∂x
Ex
[
e−qτ01{τ0<∞}

]
= − q

ζq

[
−ζqW (q)(x) +W (q)′(x)

]
x↓0+−−−→ − q

ζq

[
−ζqW (q)(0) +W (q)′(0+)

]
= − q

ζq
θ

where, by Lemma 3.3,

θ := −ζqW (q)(0) +W (q)′(0+) =

 2
σ2 , for Case 1

− ζq
µ + q+λ

µ2
, for Case 2

 .(3.5)

In summary, we have the following lemma.
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Lemma 3.4. For every q > 0, we have

∂

∂a
Ex
[
e−qτa1{τa<∞}

]
=

q

ζq
eζq(x−a)W ′ζq(x− a), 0 ≤ a < x,

∂

∂x
Ex
[
e−qτ01{τ0<∞}

]∣∣∣∣
x=0+

= − q

ζq
θ.

3.3. Scale functions for Lévy processes with phase-type jumps. We are now ready to obtain the scale function

for the Lévy process with phase-type jumps. We assume in this subsection that q > 0 and address in the next

subsection for the case q = 0. We shall first represent the positive root ζq (1.4) of the Cramér-Lundberg equation

(2.3) in terms of the negative roots {ξi,q; i ∈ Iq}. Recall that A’s are those obtained by inverting the Laplace

transform of the Wiener-Hopf factor as in (2.6) and (2.7). Let us define

%q :=

n∑
i=1

A
(1)
i,q ξi,q, q > 0,(3.6)

which reduces, when the representation is minimal, to

%q =
∑
i∈Iq

Ai,qξi,q, q > 0.(3.7)

Lemma 3.5. For every q > 0, we have

ζq
q

=
θ

%q
.(3.8)

Proof. By (2.9) and (2.11), we have

∂

∂x
Ex
[
e−qτ01{τ0<∞}

]∣∣∣∣
x=0+

= −%q.

Matching this and the second claim of Lemma 3.4, we have the claim. �

We now obtain the version of the scale function Wζq(·). In the lemma below, Wζq(0) = W (q)(0) is either 0 or
1
µ depending on if it is Case 1 or Case 2; see Lemma 3.3.

Lemma 3.6. For every q > 0, we have

Wζq(x)−Wζq(0) =
θ

%q

n∑
i=1

mi∑
k=1

A
(k)
i,q

(
ξi,q

ζq + ξi,q

)k 1− e−(ζq+ξi,q)x
k−1∑
j=0

((ζq + ξi,q)x)j

j!

 , x ≥ 0.

In particular, when the roots are all distinct, we have

Wζq(x)−Wζq(0) =
∑
i∈Iq

Ci,q

[
1− e−(ζq+ξi,q)x

]
, x ≥ 0
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where

Ci,q :=
θ

%q

ξi,qAi,q
ζq + ξi,q

, i ∈ Iq.(3.9)

Proof. Fix 0 ≤ a < x. By (2.8), we have

∂

∂a
Ex
[
e−qτa1{τa<∞}

]
=

n∑
i=1

mi∑
k=1

A
(k)
i,q ξi,q

(ξi,q(x− a))k−1

(k − 1)!
e−ξi,q(x−a).

Matching this and the first claim of Lemma 3.4 and using (3.8), we have

W ′ζq(x− a) =
θ

%q

n∑
i=1

mi∑
k=1

A
(k)
i,q ξi,q

(ξi,q(x− a))k−1

(k − 1)!
e−(ζq+ξi,q)(x−a)

=
θ

%q

n∑
i=1

mi∑
k=1

A
(k)
i,q (ζq + ξi,q)

(
ξi,q

ζq + ξi,q

)k ((ζq + ξi,q)(x− a))k−1

(k − 1)!
e−(ζq+ξi,q)(x−a).

Because 0 ≤ a < x is arbitrary, we have

W ′ζq(y) =
θ

%q

n∑
i=1

mi∑
k=1

A
(k)
i,q (ζq + ξi,q)

(
ξi,q

ζq + ξi,q

)k ((ζq + ξi,q)y)k−1

(k − 1)!
e−(ζq+ξi,q)y, y ≥ 0.

Integrating the above, we have for every x ≥ 0

Wζq(x)−Wζq(0) =
θ

%q

n∑
i=1

mi∑
k=1

A
(k)
i,q

(
ξi,q

ζq + ξi,q

)k ζq + ξi,q
(k − 1)!

∫ x

0
((ζq + ξi,q)y)k−1e−(ζq+ξi,q)ydy

=
θ

%q

n∑
i=1

mi∑
k=1

A
(k)
i,q

(
ξi,q

ζq + ξi,q

)k 1

(k − 1)!

∫ (ζq+ξi,q)x

0
zk−1e−zdz.

The first claim is now immediate because the integral part is a lower incomplete gamma function,

∫ (ζq+ξi,q)x

0
zk−1e−zdz = (k − 1)!

1− e−(ζq+ξi,q)x
k−1∑
j=0

((ζq + ξi,q)x)j

j!

 , x ≥ 0.

In particular, when the roots are all distinct (see (2.10)), we have

Wζq(x)−Wζq(0) =
θ

%q

∑
i∈Iq

ξi,qAi,q
ζq + ξi,q

[
1− e−(ζq+ξi,q)x

]
, x ≥ 0,

as desired. �

Lemma 3.6 and (3.4) imply that

W (q)(x) =
θ

%q

n∑
i=1

mi∑
k=1

A
(k)
i,q

(
ξi,q

ζq + ξi,q

)k eζqx − e−ξi,qx k−1∑
j=0

((ζq + ξi,q)x)j

j!

+Wζq(0)eζqx, x ≥ 0
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where, in particular, when the roots are all distinct,

W (q)(x) =
∑
i∈Iq

Ci,q

[
eζqx − e−ξi,qx

]
+Wζq(0)eζqx, x ≥ 0.(3.10)

This together with Lemma 3.3 and (3.5) shows the following.

Proposition 3.1. For every q > 0, we have the following.

(1) For Case 1, we have

W (q)(x) =
2

σ2%q

n∑
i=1

mi∑
k=1

A
(k)
i,q

(
ξi,q

ζq + ξi,q

)k eζqx − e−ξi,qx k−1∑
j=0

((ζq + ξi,q)x)j

j!

 , x ≥ 0

where, in particular, when the roots are all distinct,

W (q)(x) =
2

σ2%q

∑
i∈Iq

ξi,qAi,q
ζq + ξi,q

[
eζqx − e−ξi,qx

]
, x ≥ 0.

(2) For Case 2, we have

W (q)(x) =
1

%q

(
−ζq
µ

+
q + λ

µ2

) n∑
i=1

mi∑
k=1

A
(k)
i,q

(
ξi,q

ζq + ξi,q

)k eζqx − e−ξi,qx k−1∑
j=0

((ζq + ξi,q)x)j

j!

+
1

µ
eζqx, x ≥ 0

where, in particular, when the roots are all distinct,

W (q)(x) =
1

%q

(
−ζq
µ

+
q + λ

µ2

)∑
i∈Iq

ξi,qAi,q
ζq + ξi,q

[
eζqx − e−ξi,qx

]
+

1

µ
eζqx, x ≥ 0.

Remark 3.1. Suppose the roots are all distinct. By Lemma 3.6, we have, for every β > 0,∫ ∞
0

e−βxWζq(x)dx =
∑
i∈Iq

Ci,q

∫ ∞
0

e−βx
[
1− e−(ζq+ξi,q)x

]
dx+Wζq(0)

∫ ∞
0

e−βxdx

=
∑
i∈Iq

Ci,q

(
1

β
− 1

ζq + ξi,q + β

)
+
Wζq(0)

β
.

Therefore, by (3.3), we have∑
i∈Iq

Ci,q

(
1

β
− 1

ζq + ξi,q + β

)
+
Wζq(0)

β
=

1

ψ(β + ζq)− q
, β > 0.(3.11)

Similarly, by (3.10), we have, for every β > ζq,∫ ∞
0

e−βxW (q)(x)dx =
∑
i∈Iq

Ci,q

∫ ∞
0

e−βx
[
eζqx − e−ξi,qx

]
dx+Wζq(0)

∫ ∞
0

e−(β−ζq)xdx

=
∑
i∈Iq

Ci,q

(
1

β − ζq
− 1

ξi,q + β

)
+
Wζq(0)

β − ζq
.
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Therefore, by (1.3), we have∑
i∈Iq

Ci,q

(
1

β − ζq
− 1

ξi,q + β

)
+
Wζq(0)

β − ζq
=

1

ψ(β)− q
, β > ζq.

These identities may be used alternatively to obtain the parameters {Ci,q; i ∈ Iq}. In fact, in Section 5, we will

use these to verify the accuracy of the numerically-obtained scale functions.

3.4. Extensions to q = 0. As observed in Lemma 3.2, the scale function for q = 0 can be obtained by taking

the limit as q → 0 for every fixed x ≥ 0. Because the Laplace exponent ψ is analytic everywhere except at the

eigenvalues of T , we can take

ξi,q
q↓0−−→ ξi,0, i ∈ Iq,

for some ξi,0 such that ψ(−ξi,0) = 0 and R(ξi,q) ≥ 0. We can therefore define the set I0 (with the value zero

included) in the analogous way with the same cardinality as Iq for q > 0. Similarly, there exists ζ0 as a limit of ζq

as q → 0.

Unfortunately, when the overall drift

u := EX1 = ψ′(0+)

is negative, the representations of scale functions for q = 0 in Lemma 3.6 and Proposition 3.1 cannot be obtained

directly by substituting the limits of A’s and %q because these values vanish in the limit. Let us take a look at this

closer. It is well-known that

ζq
q↓0−−→ ζ0

 > 0, u < 0

= 0, u ≥ 0

 .(3.12)

Now in view of (3.8), we must have limq→0 %q = 0 when u < 0 because the left-hand side of (3.8) tends to infinity

as q → 0. Moreover, due to the definition of %q in (3.6) and (3.7), the limit values of (Ai,qξi,q) for each i ∈ Iq
must converge to 0 as well (i.e. at least one of Ai,q and ξi,q vanishes in the limit). We therefore need to rely on

l’Hôpital’s rule in taking the limits. It should be mentioned, however, that in the case u > 0, the scale functions

can be obtained directly by substituting the limits of the roots ξi,q and ζq.

Suppose ξ1,0 is the smallest value of ξi,0 in I0. Then either ζ0 or ξ1,0 must be 0 because ψ(0) = 0. In fact, we

have

ξ1,q
q↓0−−→ ξ1,0

 = 0, u ≤ 0

> 0, u > 0

 ,(3.13)
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which complements the convergence result of ζq. Therefore, when q = 0 and u < 0, one of the terms in the

scale function (which are normally exponential functions of x) is no longer exponential because one of the roots

vanishes. Furthermore, when u < 0 and when u > 0, respectively, we have

ξ1,q
q

q↓0−−→ − 1

ψ′(0+)
= −1

u
and

ζq
q

q↓0−−→ 1

ψ′(0+)
=

1

u
.(3.14)

Therefore, regarding the scale functions for q = 0, it is expected that the overall drift u comes into play. See, for

example, Egami and Yamazaki [15] (Lemma 4.4).

4. OBTAINING SCALE FUNCTIONS VIA MATRIX INVERSION

In this section, we focus on the case when the elements in Iq are all distinct and the representation is minimal.

We express the scale function in a simpler form via matrix inversion without relying on the partial fraction ex-

pansion. We then obtain the scale functions for the following special cases: hyperexponential jump diffusion, a

standard Brownian motion, exponential jump diffusion and a compound Poisson process with exponential jumps.

We see that the scale functions for these processes indeed match the results addressed previously in other papers.

4.1. Scale functions in terms of matrix inversion. We assume that the roots in Iq are all distinct and the represen-

tation (m,α,T ) is minimal. Recall that, by (2.5), we can set Iq = {1, . . . ,m+ 1} for Case 1 and Iq = {1, . . . ,m}

for Case 2. Consider the first passage time τa defined in (2.2), and let G0, G1, . . . , Gm be such that G0 is the event

of down-crossing the threshold a by creeping downward (Xτa = a), and Gj , for every j = 1, . . . ,m, is the event

caused by a jump of phase-type j; see Asmussen et al. [3] for the formal definition of these events. As discussed

earlier, G0 cannot occur in Case 2.

Fix q > 0 and let π = [π1, . . . , π|Iq |]
′ be a vector consisting of

πj =

 Ex
[
e−qτa1Gj−1

]
, for Case 1

Ex
[
e−qτa1Gj

]
, for Case 2

 , j = 1, . . . , |Iq|.

Let f̃(s) be an |Iq|-dimensional row vector of a function such that, in Case 1, its first component is 1 and the other

components are ((sI − T )−1t)′, while, in Case 2, it is ((sI − T )−1t)′. Then we have

f̃(−ξi,q) =


[
1
(
(−ξi,qI − T )−1t

)′] , for Case 1(
(−ξi,qI − T )−1t

)′
, for Case 2

 , i ∈ Iq.

Fix 0 ≤ a < x. By Proposition 2-(2) of Asmussen et al. [3], we have

f̃(−ξi,q)π = e−ξi,q(x−a), i ∈ Iq.(4.1)
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We shall express the system of equations defined in (4.1) by

Hπ = b(4.2)

whereH is an |Iq|-dimensional square matrix and b is an |Iq|-dimensional vector such that

H =


f̃(−ξ1,q)

...

f̃(−ξ|Iq |,q)

 and b =


e−ξ1,q(x−a)

...

e−ξ|Iq |,q(x−a)

 .
HereH is invertible and the solution to (4.2) is unique because (m,α,T ) is assumed to be minimal; see Asmussen

et al. [3] for proof.

From the definition of π, we have

Ex
[
e−qτa1{τa<∞}

]
=

|Iq |∑
j=1

πj =: π′1.(4.3)

We now express (4.3) in terms of a linear combination of e−ξ1,q(x−a), . . . , e−ξ|Iq |,q(x−a), and obtain their coeffi-

cients. This can be done by changing it to the form considered for the hyperexponential case in Cai [10]. Indeed,

(4.3) is a solution to the trivial linear programming,

minimize π′1 subject to (4.2),

and its dual problem becomes finding an |Iq|-dimensional vector w = [w1, . . . , w|Iq |] for the following:

maximize b′w subject toH ′w = 1.

Due to the invertibility ofH ′, there exists a unique w that satisfies

H ′w = 1.(4.4)

Therefore, by the lack of duality gap, we have

Ex
[
e−qτa1{τa<∞}

]
=
∑
i∈Iq

wie
−ξi,q(x−a).

By replacing A’s with the entries of w in Proposition 3.1, we obtain the scale function.

In sum, to find the scale function, one merely needs to identify the entries of H in terms of ξ’s (the negative

roots of the Cramér-Lundberg equation (2.3)) and the phase-type generator T . Then w = (H ′)−11 are put in the

place of A’s in Proposition 3.1. Note that %q is defined in (3.6) or (3.7) and ζq can be obtained via Lemma 3.5 or

solving the Cramér-Lundberg equation (2.3). We shall now illustrate our results using several examples.
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4.2. The spectrally negative hyperexponential jump diffusion process. As a special case of the results above,

consider the spectrally negative hyperexponential jump diffusion process where the jump term Z is a sequence of

i.i.d. random variables with density function

f(z) =
m∑
i=1

αiηie
−ηiz, z ≥ 0,

for some 0 < η1 < · · · < ηm <∞ such that
∑m

i=1 αi = 1. Its Laplace exponent (2.4) is then

ψ(s) = µs+
1

2
σ2s2 + λ

(
m∑
i=1

αiηi
ηi + s

− 1

)
,(4.5)

and the overall drift is

u := µ− λ
m∑
i=1

αi
ηi
.

This is a special case of the Lévy process with phase-type jumps with generator

Thyp := diag(−η1, . . . ,−ηm).

The class of hyperexponential jump diffusion processes is an important subset of the processes considered in

this paper. There are numerous applications despite their simple structures. For example, as we see in Section

5, approximations of a wide class of spectrally negative Lévy processes can be attained by these processes. See

also Cai [10, 11] and Cai and Kou [12] and references therein for more details about the hyperexponential jump

diffusion process.

It is easy to see that −η1, . . . ,−ηm are the eigenvalues of T and the representation (m,α,T ) is minimal.

Consequently, we can set Iq = {1, . . . ,m+ 1} for Case 1 and Iq = {1, . . . ,m} for Case 2. We further see that

these roots can be ordered in ascending order as in the following lemma.

Lemma 4.1. Fix q > 0. For Case 1, Iq consists of ξ1,q, . . . , ξm+1,q such that

0 < ξ1,q < η1 < ξ2,q < · · · < ηm < ξm+1,q <∞,

and, for Case 2, it consists of ξ1,q, . . . , ξm,q such that

0 < ξ1,q < η1 < ξ2,q < · · · < ξm,q < ηm <∞.

Proof. For Case 1, see the proof of Lemma 2.1 in Cai [10]. It can be shown for Case 2 similarly. For every i =

2, . . . ,m, notice from (4.5) that ψ(−ηi+) =∞ and ψ(−ηi−1−) = −∞ and due to its continuity on (−ηi,−ηi−1),

there must be at least one root to ψ(s) = q on the interval. Moreover, because ψ(0) = 0 and ψ(−η1+) =∞, there
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must be at least one root on (−η1, 0). Now, by (2.5), there must be exactly one root on each interval, and hence the

proof is complete. �

Figure 1 illustrates the Laplace exponent functions of hyperexponential jump diffusion processes and their roots

of Cramér-Lundberg equation (2.3) when the overall drift u is negative and positive for both Case 1 and Case 2. It

can be reassured that the numbers of negative roots are indeed m + 1 and m, respectively, for Case 1 and Case 2.

Furthermore, the convergence results of ζq and ξ1,q as q → 0 are consistent with (3.12) and (3.13).

In order to obtain its scale function for q > 0 or u > 0, we need to solve the system (4.2). In particular, for Case

1, we have

f̃(s) ≡ f̃hyp(s) :=

[
1,

η1
η1 + s

, . . .
ηm

ηm + s

]
and hence

H ′ ≡H ′hyp =


1 1 · · · 1

η1
η1−ξ1,q

η1
η1−ξ2,q · · · η1

η1−ξm+1,q

...
...

. . .
...

ηm
ηm−ξ1,q

ηm
ηm−ξ2,q · · · ηm

ηm−ξm+1,q

 .

On the other hand, for Case 2, we have

f̃hyp(s) :=

[
η1

η1 + s
, . . .

ηm
ηm + s

]
and

H ′hyp =


η1

η1−ξ1,q
η1

η1−ξ2,q · · · η1
η1−ξm,q

...
...

. . .
...

ηm
ηm−ξ1,q

ηm
ηm−ξ2,q · · · ηm

ηm−ξm,q

 .
By invertingH ′hyp to obtainw by (4.4) and replacing A’s withw in Proposition 3.1, we obtain the scale function;

see Section 5 for numerical examples. The case q = 0 and u < 0 can be also handled by differentiating both sides

of (4.2) with respect to q as in Cai [10].

4.3. Other examples. We consider several special cases of the spectrally negative hyperexponential jump diffu-

sion process. We consider (1) a standard Brownian motion, (2) exponential jump diffusion and (3) a compound

Poisson process with exponential jumps, and show that their scale functions can be obtained in the same frame-

work. Here we obtain W (q), which can be converted to Wζq by (3.2).
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FIGURE 1. Illustrations of the Laplace exponent functions of hyperexponential jump diffusion

processes and the roots of the Cramér-Lundberg equation (2.3) when q = 1, showing the cases

where the overall drift u is positive and negative for both Case 1 and Case 2. Here we use parame-

ters m = 4, η1 = 1.0, η2 = 2.0, η3 = 3.0 and η4 = 4.0 for each case, and (a) µ = −0.2, σ = 0.5

and λ = 0.1, (b) µ = 0.3, σ = 0.5 and λ = 0.1, (c) µ = 0.25, σ = 0 and λ = 1, and (d) µ = 1.2,

σ = 0 and λ = 1.

Corollary 4.1 (Brownian motion). For a standard Brownian motion (µ = 0, σ = 1 and λ = 0), the scale function

is, for every q > 0,

W (q)(x) =

√
2

q
sinh(

√
2qx), x ≥ 0.
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Proof. Because m = 0 and σ = 1 > 0, we have Iq = {1} and the Laplace exponent becomes

ψ(s) =
1

2
s2, s ∈ C.

It is clear that there are one positive root ζq and one negative root −ξ1,q of the Cramér-Lundberg equation (2.3)

such that

ζq = ξ1,q =
√

2q.

We haveH = [1] and consequently w = [1]. Substituting these in Proposition 3.1, we have the claim. �

We now consider the case jumps are exponentially distributed. The following matches the results obtained in

Lemma 4.5 of Egami and Yamazaki [15].

Corollary 4.2 (Exponential jump diffusion). Suppose m = 1, σ > 0, and jumps are exponentially distributed with

parameter η ≡ η1 (i.e. T = [−η]). For every q ≥ 0, we have

W (q)(x) =
2

σ2

∑
i∈{1,2}

li,q
ξi,q + ζq

(
eζqx − e−ξi,qx

)
, x ≥ 0

with

l1,q :=
η − ξ1,q
ξ2,q − ξ1,q

> 0 and l2,q :=
ξ2,q − η
ξ2,q − ξ1,q

> 0, q ≥ 0.

Proof. Because m = 1 and σ > 0, we have Iq = {1, 2}. Suppose first that q > 0. Note that

H ′ =

 1 1

η
η−ξ1,q

η
η−ξ2,q

 and (H ′)−1 =
(η − ξ1,q)(η − ξ2,q)
η(ξ2,q − ξ1,q)

 η
η−ξ2,q −1

− η
η−ξ1,q 1

 .
Because w = (H ′)−1I , we have

w =
(η − ξ1,q)(η − ξ2,q)
η(ξ2,q − ξ1,q)

 η
η−ξ2,q −1

− η
η−ξ1,q 1

1

1

 =
1

η(ξ2,q − ξ1,q)

ξ2,q(η − ξ1,q)
ξ1,q(ξ2,q − η)

 .
This also implies that

%q =
∑

i∈{1,2}

wiξi,q =
ξ1,qξ2,q
η

,

and substituting these in Proposition 3.1, we have the claim. The case for q = 0 holds by taking q → 0 as discussed

in Subsection 3.4.

�
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We now consider, as an example of Case 2, a compound Poisson process with negative exponential jumps. The

scale function for this process when q = 0 is well-known; see, for example, Hubalek and Kyprianou [17]. Here

we obtain its scale function for every q ≥ 0.

Corollary 4.3 (a compound Poisson process with negative exponential jumps). Suppose m = 1, σ = 0, and jumps

are exponentially distributed with rate η ≡ η1 (i.e. T = [−η]). Then, for every q > 0, we have

W (q)(x) =

(
−ζq +

q + λ

µ

)
1√

(ηµ− q − λ)2 + 4µqη

[
eζqx − e−ξ1,qx

]
+

1

µ
eζqx, x ≥ 0

where

ζq =
−ηµ+ q + λ+

√
(ηµ− q − λ)2 + 4µqη

2µ
,

−ξ1,q =
−ηµ+ q + λ−

√
(ηµ− q − λ)2 + 4µqη

2µ
.

(4.6)

Furthermore, when q = 0 and u = µ− λ
η 6= 0, we have

W (0)(x) =
1

µ

[
λ

ηµ− λ

(
1− e−

ηµ−λ
µ

x
)

+ 1

]
, x ≥ 0,

which matches the well-known result as in, for example, Hubalek and Kyprianou [17].

Proof. Because m = 1 and σ = 0, we have Iq = {1} and the Laplace exponent becomes

ψ(s) := µs+ λ

(
η

η + s
− 1

)
, s ∈ C.

For any q > 0, by solving the corresponding Cramér-Lundberg equation (2.3), we see that there are two solutions

ζq and −ξ1,q defined in (4.6). We haveH ′ =
[

η
η−ξ1,q

]
and therefore A1,q =

η−ξ1,q
η and %q = ξ1,qA1,q. Notice that

ζq + ξ1,q =

√
(ηµ− q − λ)2 + 4µqη

µ
.

These together with Proposition 3.1-(2) show the case for q > 0.

For the case q = 0 and u 6= 0, by taking the limit as q → 0, we have

W (0)(x) =


(
λ
µ

)
1

ηµ−λ
[
1− e−ξ1,0x

]
+ 1

µ , u > 0(
−ζ0 + λ

µ

)
1

λ−ηµ
[
eζ0x − 1

]
+ 1

µe
ζ0x, u < 0

 , x ≥ 0

where

u = µ− λ

η
, ζ0 =

 0, u > 0

−ηµ+λ
µ , u < 0

 and ξ1,0 =


ηµ−λ
µ , u > 0

0, u < 0

 .

The claim is now immediate after some algebra. �
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5. APPROXIMATING THE SCALE FUNCTION OF A GENERAL SPECTRALLY NEGATIVE LÉVY PROCESS

We conclude this paper by illustrating a new approach to approximating the scale function for a general spec-

trally negative Lévy process. As noted earlier, any spectrally negative Lévy process can be approximated arbitrarily

closely by fitting phase-type distributions. Here, we use the fitted data computed by Feldmann and Whitt [16] to

approximate the scale function when the jumps have Weibull and Pareto distributions. Recall that the Weibull

distribution with parameters c and a (denoted Weibull(c, a)) is give by

F (t) = 1− e−(t/a)c , t ≥ 0

and the Pareto distribution with positive parameters a and b (denoted Pareto(a,b)) is given by

F (t) = 1− (1 + bt)−a, t ≥ 0.

These have long-tails, namely

eδt(1− F (t))→∞ as t→∞

for any δ > 0. See Johnson and Kotz [18] for more details about these distributions.

Feldmann and Whitt [16] showed that if a pdf f(·) is completely monotone, meaning that all derivatives exist

and

(−1)nf (n)(t) ≥ 0, t > 0 and n ≥ 1,

then it can be approximated by pdf’s of hyperexponential distributions. As shown by Bernstein [6], every com-

pletely monotone pdf is a mixture of exponential pdf’s, and this implies that, for any cdf with a completely mono-

tone pdf, there exists a sequence of hyperexponential cdf’s converging to it. The class of distributions with com-

pletely monotone pdf’s contains a number of distributions such as the Pareto distribution, the Weibull distribution

with a < 1, the gamma distribution with parameter less than 1 and the Pareto mixture of exponentials distributions.

Feldmann and Whitt [16] took advantage of this fact and proposed a recursive algorithm for fitting hyperexponen-

tial distributions to these distributions.

We focus on spectrally negative Lévy processes with Weibull- and Pareto-distributed jumps, and compute their

scale functions using the results obtained by Feldmann and Whitt [16]. We consider both the unbounded variation

(Case 1) and the compound Poisson (Case 2) cases.

5.1. Computed scale functions. Consider the cases where jumps are (i) Weibull-distributed with c = 0.6 and

a = 0.665 and (ii) Pareto-distributed with a = 1.2 and b = 5. Table 1 shows the parameters of the hyperexponential
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i αi ηi

1 0.029931 676.178

2 0.093283 38.7090

3 0.332195 4.27400

4 0.476233 0.76100

5 0.068340 0.24800

6 0.000018 0.09700

i αi ηi i αi ηi

1 8.37E-11 8.3E-09 8 0.000147 0.0020

2 7.18E-10 6.8E-08 9 0.001122 0.0100

3 5.56E-09 3.9E-07 10 0.008462 0.0570

4 4.27E-08 2.2E-06 11 0.059768 0.3060

5 3.27E-07 1.2E-05 12 0.307218 1.5460

6 2.50E-06 6.5E-05 13 0.533823 6.5160

7 1.92E-05 3.5E-04 14 0.089437 23.304

(i) Weibull(0.6,0.665) (ii) Pareto(1.2,5)
TABLE 1. Parameters of the hyperexponential distributions fitted to (i) a Weibull distribution

with c = 0.6 and a = 0.665 and (ii) a Pareto distribution with a = 1.2 and b = 5 (taken from

Tables 3 and 9, respectively, of Feldmann and Whitt [16]).

distributions obtained by Feldmann and Whitt [16] fitted to (i) with m = 6 and to (ii) with m = 14. As can be

seen in Fig. 4 and Fig. 9, respectively, for (i) and (ii) in Feldmann and Whitt [16], these fittings are very accurate.

For both (i) and (ii), we consider the Lévy processes with (a) µ = 0, σ = 0.01 and λ = 0.1 and (b) µ = 0.1,

σ = 0 and λ = 0.1 as examples of Case 1 and Case 2, respectively, and compute the corresponding scale functions

when q = 0.2. The roots ξ·,q’s and ζq are calculated via the bisection method with error bound 1.0E − 10. The

matrixH is then calculated and A’s (or w’s) are obtained by matrix inversion as in (4.4). Tables 2 and 3 show A’s

and the coefficients C’s for the scale functions as in (3.9).

5.2. Verification. We further verify the accuracy of the obtained scale functions using the identity (3.11). In Table

4, we compare the values of the right- and left-hand sides of (3.11) for various values of β.

For the right-hand side, we used the Laplace exponents corresponding to the fitted hyperexponential jump dif-

fusion processes. One could replace them with those of the Lévy processes with the targeted Weibull- and Pareto-

distributed jumps in order to see how close the obtained scale functions are to those for these processes. However,

we choose not to do so because the fitting errors are expected to be negligible considering the performance of the

fittings as shown in Fig. 4 and Fig. 9 of Feldmann and Whitt [16], and they are expected to be smaller than the

computational errors involved in numerically computing the Laplace transforms for these long-tail distributions.

In fact, Feldmann and Whitt [16] address that one of their motivations of approximating via hyperexponential

distributions comes from the analytical tractability of obtaining their Laplace transforms.
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i ξi,q Ai,q Ci,q

1 0.0969990705796 0.000010213932094 0.0000049474290

2 0.2387406362121 0.042207380215956 0.0502261535296

3 0.6178972697386 0.181977148543284 0.5577059566440

4 3.7980930145449 0.087513431726977 1.5832236290145

5 37.160241923152 0.051804177184444 6.4758763022306

6 78.497115144071 0.636476073284678 123.22078286003

7 676.26768636481 0.000011575112568 0.0039733229452

(a) µ = 0, σ = 0.01 and λ = 0.1

i ξi,q Ai,q Ci,q

1 0.0969991162227 0.000009573264242 0.000004473473070

2 0.2398073307540 0.036062429378262 0.039536262104837

3 0.6467831574459 0.143476761697239 0.039536262104837

4 4.0726718323650 0.037351696325079 0.293551992181030

5 38.622287041928 0.001738440970256 0.020866877535261

6 676.14820026674 0.000034414006923 0.000438794874100

(b) µ = 0.1, σ = 0 and λ = 0.1

TABLE 2. The computed parameters for Weibull (0.6,0.665).

We see, in Tables 4 and 5, that the computation is very accurate, and the errors caused by the bisection method

and matrix inversion are negligible. This verifies the results obtained in this paper and the effectiveness of the

approximation method described in this section.
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i ξi,q Ai,q Ci,q

1 0.000000008235156 0.007813458670425 0.000000000003246

2 0.000000067941699 0.000849779495869 0.000000000002913

3 0.000000389921386 0.000199758818815 0.000000000003929

4 0.000002199944736 0.000024894827628 0.000000000002763

5 0.000011999924064 0.000006271675736 0.000000000003797

6 0.000064999898911 0.000001541426092 0.000000000005055

7 0.000349996670502 0.000009429635617 0.000000000166497

8 0.001999852975897 0.000072915691854 0.000000007356267

9 0.009994374942093 0.000559383483826 0.000000282006005

10 0.056756368788265 0.004300742193124 0.000012305122823

11 0.296725362741112 0.031481003607834 0.000469432459232

12 1.335002927170950 0.139603262110976 0.009241025235379

13 5.355731274613405 0.150622194007917 0.038035855476823

14 22.605546762702495 0.026354651553805 0.023204214950600

15 78.642108436899349 0.638100712800481 1.248839677422900

(a) µ = 0, σ = 0.01 and λ = 0.1

i ξi,q Ai,q Ci

1 0.000000008235156 0.007813458664207 0.000000000324612

2 0.000000067941699 0.000849779490290 0.000000000291268

3 0.000000389921386 0.000199758811288 0.000000000392946

4 0.000002199944736 0.000024894822336 0.000000000276293

5 0.000011999924064 0.000006271668464 0.000000000379673

6 0.000064999898911 0.000001541416410 0.000000000505441

7 0.000349996670502 0.000009429316546 0.000000016646795

8 0.001999852975897 0.000072901557445 0.000000734891418

9 0.009994403048011 0.000556045657406 0.000027919877439

10 0.056763159011767 0.004157334908929 0.001163016693045

11 0.297941138195587 0.026612250464557 0.035585440075800

12 1.416075105040742 0.081538553045039 0.366437520584395

13 6.134594568717034 0.050061829801001 0.435890183944306

14 23.225218986441462 0.002719941701028 0.029865726745919

(b) µ = 0.1, σ = 0 and λ = 0.1

TABLE 3. The computed parameters for Pareto(1.2,5)

.



ON SCALE FUNCTIONS OF SPECTRALLY NEGATIVE LÉVY PROCESSES WITH PHASE-TYPE JUMPS 27

β LHS RHS absolute error

0.05 2636.956051024141 2636.956050828426 1.9571e-007

0.10 1318.038418276205 1318.038418225931 5.0274e-008

0.50 262.9064571661544 262.9064571636729 2.4815e-009

1.00 131.0176256611043 131.0176256603400 7.6429e-010

10.0 12.36501436360020 12.36501436357116 2.9040e-011

100 0.792975691767121 0.792975691766349 7.7205e-013

(a) µ = 0, σ = 0.01 and λ = 0.1

β LHS RHS absolute error

0.05 214.3239334009206 214.3239333328580 6.8063e-008

0.10 107.0782263782371 107.0782263613487 1.6888e-008

0.50 21.29602428989161 21.29602428925708 6.3453e-010

1.00 10.58738231829800 10.58738231815195 1.4605e-010

10.0 1.023286182446206 1.023286182446003 2.0317e-013

100 0.100373126437125 0.100373126437134 9.0067e-015

(b) µ = 0.1, σ = 0 and λ = 0.1

TABLE 4. The left- and right-hand sides of (3.11) and their differences for Weibull(0.6,0.665).
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β LHS RHS absolute error

0.05 2638.718948463406 2638.718947228851 1.2346e-006

0.10 1318.916455287831 1318.916454977145 3.1069e-007

0.50 263.0766634379456 263.0766634248073 1.3138e-008

1.00 131.0994239282779 131.0994239247748 3.5031e-009

10.0 12.36839081902370 12.36839081895586 6.7841e-011

100 0.792429248707535 0.792429248706064 1.4709e-012

(a) µ = 0, σ = 0.01 and λ = 0.1

β LHS RHS absolute error

0.05 217.2193200018033 217.2193198697241 1.3208e-007

0.10 108.5313601994563 108.5313601615090 3.7947e-008

0.50 21.59216520759314 21.59216520482761 2.7655e-009

1.00 10.73611494941012 10.73611494847104 9.3908e-010

10.0 1.033125850470901 1.033125850459483 1.1418e-011

100 0.100548132483049 0.100548132483021 2.8005e-014

(b) µ = 0.1, σ = 0 and λ = 0.1

TABLE 5. The left- and right-hand sides of (3.11) and their differences for Pareto(1.2,5).
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