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ASYMPTOTICALLY EFFICIENT DISCRETE HEDGING

M. FUKASAWA

Abstract. The notion of asymptotic efficiency for discrete hedging is introduced
and a discretizing strategy which is asymptotically efficient is given explicitly. A
lower bound for asymptotic risk of discrete hedging is given, which is attained
by a simple discretization scheme. Numerical results for delta hedging in the
Black-Scholes model are also presented.

1. Introduction

This article considers hedging a derivative by dynamically rebalancing a port-
folio of underlying asset and riskless asset under a realistic condition. Namely, it
is supposed that the rebalancing is limited to occur discretely. In such a realistic
situation, a general future payoff cannot be hedged even in the Black-Scholes nor
the other complete market models. In incomplete market models, hedge-error
risk is decomposed into two parts: one coming from the incompleteness of the
market and the another coming from the fact that we cannot rebalance any port-
folio continuously. The aim of this article is to introduce a criterion of hedge-error
risk associated with the restriction of rebalancing and to construct a discretization
scheme which is efficient with respect to the criterion. We deal with the differ-
ence between a quantity which can be hedged by continuous rebalancing and a
quantity which can be realized by discrete rebalancing. Therefore, we are not con-
cerned with the portfolio selection in the usual sense but deal with construction of
discretization schemes for a given portfolio strategy.

This problem is reduced to analyzing discretization error of stochastic integrals.
Here, rebalancing times are corresponding to the partition for the Riemann sum
associated with a stochastic integral. Naturally, we suppose that the rebalancing
times are increasing stopping times. In the case that the times are equidistant,
Rootzén (1980) gave the convergence rate and the asymptotic distribution of the
discretization error. Bertsimas, Kogan and Lo (2000), Hayashi and Mykland (2005)
treated the same problem in the context of hedge-error. Tankov and Voltchkova
(2009) extends the results to discontinuous semimartingales. Gobet and Temam
(2001), Geiss (2005) among others gave asymptotic estimates in the Lp sense. It
is usually not so difficult to extend the results to a non-equidistant partition as
long as the partition is deterministic. However, it is not so natural to restrict that
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the rebalancing times are deterministic from practical viewpoints. They should be
determined adaptively to, for example, the currently having number of shares, the
number of shares that should be currently held, and the current price of the un-
derlying asset. Nevertheless, it remains an open problem to construct an optimal
strategy of rebalancing times. Martini and Patry (1999) considered the minimiza-
tion of L2 hedge-error under the risk-neutral measure in the Black-Scholes model.
They analyzed the optimal stopping times given a fixed number of transactions:
their existence, uniqueness and numerical construction. This article takes a dif-
ferent approach to the discrete hedging problem taking the following aspects into
consideration; 1) there is no need to fix the number of transactions in practice as
far as it is finite, 2) it is not so clear which probability measure we should take
in the L2 minimization problem, and 3) an explicit construction of a discretization
scheme is preferable even if it is only an approximation of the optimal solution.

We develop an asymptotic theory to tackle the discrete hedging problem. The
notion of asymptotic efficiency for discrete hedging is introduced and a discretiz-
ing strategy which is asymptotically efficient is given explicitly. A lower bound
for asymptotic risk of discrete hedging is given, which is attained by a simple
discretization scheme. Numerical results for delta hedging in the Black-Scholes
model are also presented.

2. Formulation

2.1. Notation and Definitions. Here we give a rigorous formulation of our prob-
lem. For the sake of brevity, we suppose that the risk-free rate is always 0 through-
out this article. Suppose that an asset price process Y is a continuous semimartin-
gale on a stochastic basis (Ω,F , {Ft},P). Denote by E the expectation with respect
to the measure P. If we write G · F for adapted processes G and F, it stands for the
stochastic integral or the Stiltjes integral of G with respect to F in case of F being
semimartingale or of bounded variation respectively. Fix a stopping time T which
stands for the maturity of a derivative. Since we are interested in the discretization
of hedging strategy, we suppose that a hedging strategy X defined on [0,T] is given
and the quantity

(1) X · Y =
∫ T

0
XsdYs

is what we should replicate. Due to our restriction of rebalancing, the quantity

(2) Xn · Y =
∫ T

0
Xn

s dYs =

∞∑
j=0

X̄n
j (Yτn

j+1∧T − Yτn
j∧T)

is what we can realize, where we define Xn as

Xn
s = X̄n

j , s ∈ [τn
j ∧ T, τn

j+1 ∧ T)
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with random variables X̄n
j which are Fτn

j
-measurable for each j ≥ 0. Here, τn

j are
stopping times such that

0 = τn
0 < τ

n
1 < · · · < τn

j < . . . , a.s.,

and that for any stopping time τ such that τ < T, it holds

(3) Nn
τ := max{ j ≥ 0; τn

j ≤ τ} < ∞, a.s..

Note that τn
j stands for j-th rebalancing time and Nn

τ is the number of transactions
up to time τ. The problem treated here is the fact that even if Xs is given explicitly
for any s ∈ [0,T], we can only rebalance our portfolio discretely in time. For
example, in the Black-Scholes world

(4) dYt = µYtdt + σYtdWt,

the future payoff f (YT) can be hedged by continuous rebalancing as

f (YT) = P(0,Y0) +
∫ T

0
XsdYs,

where

Xt = ∂yP f (t,Yt), P f (t, y) =
∫

f (y exp(−σ2(T − t)/2 + σ
√

T − tz))φ(z)dz.

Though the hedging strategy X is given explicitly here, what we can have in practice
is the sum of an initial constant and the Riemann sum of (2). The stochastic part of
the corresponding hedge-error is then given by

Zn = X · Y − Xn · Y.

Our aim here is to estimate Zn and to construct an optimal sequence of (τn
j , X̄

n
j ) in

some sense. The simplest strategy (stopping times) is equidistant one;

τn
j = jhn, j = 0, 1, . . . ,

for a positive constant hn > 0. We can consider, for example,

τn
0 = 0, τn

j+1 = inf{t > τn
j ; |Xt − Xτn

j
|2 = hn}

on the other hand. We want to choose a strategy among these many candidates.
Here we explain the role of the index n. This is for an asymptotic argument of

n→∞. By the nature of the problem, the durations of transactions τn
j+1 − τn

j can be
considered sufficiently small relative to [0,T]. For example, if the maturity is one
year T = 1 and if the portfolio is rebalanced approximately every weekday, then
τn

j+1 − τn
j ≈ 1/250. Therefore, dealing with a sequence τn = {τn

j } j with τn
j+1 − τn

j → 0
as n→∞, we can approximate to quantities associated with Zn by their limits. This
asymptotic argument enables us to derive a simple lower bound of asymptotic risk
as well as a strategy which attains the lower bound. The precise description of the
asymptotic condition is given later. We call the sequence {πn}n of the sequences
πn = {(τn

j , X̄
n
j )} j a discrete hedging strategy.
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It is simplest and most natural to take X̄n
j = Xτn

j
for each j ≥ 0 as a discrete

approximation of the stochastic integral. Put

Ẑn = X · Y − X̂n · Y
with

X̂n
s = Xτn

j
, s ∈ [τn

j ∧ T, τn
j+1 ∧ T).

We say Xn is natural and πn is natural if Xn = X̂n. Note that there is no need to
take such a special form of Xn from practical point of view. Nevertheless, we will
see that the lower bound of asymptotic risk is attained by a natural strategy.

2.2. Discrete Hedging Risk. Since the hedge-error is given by Zn, we shall intro-
duce a risk criterion associated with this stochastic process. At the maturity T, the
hedge-error is Zn

T, so that the simplest criterion would be

E[|Zn
T |2].

It is however not clear which measure E (or P) we should take. Martini and Patry
(1999) and many preceding studies on hedging in incomplete markets took an
equivalent martingale measure as E. If it is the case, Zn = (X − Xn) · Y is a local
martingale, so that

E[|Zn
T |2] = E[〈Zn〉T]

provided that 〈Zn〉T is integrable. Notice that 〈Zn〉 can be interpreted as the volatil-
ity of Zn, so that it also serves as a criterion of hedge-error risk. Taking this into
consideration, we introduce

(5) E[〈Zn〉T]

as our risk criterion. We stress that E is not necessarily an equivalent martingale
measure here. We will see later that an asymptotically efficient strategy with
respect to the risk defined as (5) does not depend on E. This is important because,
for example, it is well-known that drift parameter estimation for the physical
measure is difficult in a finite horizon.

Now, we fix our stochastic basis (Ω,F , {Ft},P) and introduce several definitions.

Definition 1: An adapted process ϕ is said to be locally bounded on [0,T) if there
exists a sequence of stopping times σm with σm < T, σm → T a.s. such that ϕσm∧· is
bounded.

Definition 2: An adapted process M is said to be a local martingale on [0,T) if
there exists a sequence of stopping times σm with σm < T, σm → T a.s. such that
Mσm∧· is a bounded martingale.

Definition 3: An adapted process ϕ is said to be F-continuous for an increasing
continuous adapted process F if ϕ is continuous and for any stopping times τ1, τ2

with τ1 < τ2 Fτ1 = Fτ2 , ϕ is constant on the interval [τ1, τ2].

Let us assume the following structure condition:

Condition S: Y is a one-dimensional continuous semimartingale and there exist
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(1) a continuous adapted process M which is a local martingale on [0,T),
(2) an adapted process ψ which is locally bounded on [0,T)
(3) an 〈M〉-continuous adapted process κ which is positive on [0,T)

such that it holds

X = X0 + ψ · 〈M〉 +M, 〈Y〉 = κ2 · 〈X〉

on [0,T].

The above structure condition holds, for example, in the preceding Black-Scholes
model (4) with

M = σ(YΓ) ·W, κ = Γ−1, Γt = ∂
2
yP f (t,Yt)

provided that the payoff f is a nonlinear convex function. The case f is not convex
as in hedging the digital options remains for further research. It also remains to
include the case Y is multi-dimensional and discontinuous.

3. Main results: asymptotic efficiency

The notion of the asymptotic efficiency for discrete hedging and an asymptot-
ically efficient strategy are given in this section. It should be noted first that our
risk (5) converges to 0 as n→∞ if, for example,

sup
j≥0
|τn

j+1 ∧ T − τn
j ∧ T| → 0, sup

0≤ j≤Nn
T

|X̄n
j − Xτn

j
| → 0

in probability. The more frequently is the portfolio rebalanced, the less hedge-error
does it result in. To make the problem realistic, we introduce a cost for rebalancing.
Let us consider minimizing

C(E[Nn
τ ],E[〈Zn〉τ])

for a given stopping time τwith τ ≤ T and for a given function C : [0,∞)2 → [0,∞)
which is increasing in both variables. Suppose for a while that we are given such
an inequality that

E[Nn
τ ]E[〈Zn〉τ] ≥ K

with a constant K > 0 depending on τ for any discrete hedging strategy. Then
apparently

C(E[Nn
τ ],E[〈Zn〉τ]) ≥ C(E[Nn

τ ],K/E[Nn
τ ]),

so that if there exists a discrete hedging strategy {πn}n such that it attains the lower
bound K for each n and τ and E[Nn

τ ] → ∞ (n → ∞), then the solution of the
minimization is given by πn for a certain n which minimizes C(E[Nn

τ ],K/E[Nn
τ ]). In

the following, we realize this idea in an asymptotic sense. Let us introduce a class
of discrete hedging strategies which seems sufficiently large. Denote byT the class
of discrete hedging strategies {(τn

j , X̄
n
j )} j,n satisfying the following condition.
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Condition T: There exists a sequence of stopping times σm with σm < T, σm → T,
a.s., (m→∞) such that for each m,

(6) sup
j≥0
|〈X〉τn

j+1∧σm − 〈X〉τn
j∧σm | → 0,

in probability as n→∞, there exists a deterministic sequence Km,n with Km,n →∞
(n→∞) such that

(7) E[Nn
σm ] sup

j≥0
E[〈X〉τn

j+1∧σm − 〈X〉τn
j∧σm |Fτn

j∧σm ], Km,n sup
j≥0
|Xτn

j∧σm − Xn
τn

j∧σm |

are uniformly bounded in n, and

(8) E[Nn
σm ]〈Ẑn〉σm , E[Nn

σm ]〈Zn〉σm

are uniformly integrable in n.

Note that 〈Zn〉 = (X −Xn)2 · 〈Y〉. Condition T is satisfied if, for example, it holds
that d〈X〉t = gtdt for such an adapted process g that both g and 1/g are locally
bounded on [0,T) and that

sup
j≥0
|τn

j+1 ∧ T − τn
j ∧ T| ≤ ahn, Nn

T ≤ a/hn, sup
0≤ j≤Nn

T

|X̄n
j − Xτn

j
|2 ≤ ahn a.s.

with a constant a and a sequence hn → 0.
In usual situations, the convergence (6) is weaker than the usual high frequency

assumption

sup
j≥0
|τn

j+1 ∧ T − τn
j ∧ T| → 0

in probability. It turns out that (6) is more natural in various problems. In such an
asymptotic situation, the natural Riemann sum X̂n · Y converges to the stochastic
integral X · Y, so that it is not a serious restriction to suppose |X̄n

j − Xτn
j
| → 0 as

in (7). The first quantities of (7) and (8) are related each other and their uniform
properties serve as a condition on the regularity of the sequence of stopping times
τn

j . The last one of (8) actually controls the difference between Xn and X̂n. Besides,
the integrability condition on 〈Zn〉 is preferable in terms of minimizing the hedge-
error.

Theorem A: For any {πn}n ∈ T and any stopping time τ with τ ≤ T a.s., it holds

lim inf
n→∞

E[Nn
τ ]E[〈Zn〉τ] ≥

1
6

E[κ · 〈X〉τ]2.

Proof: There exists a sequence of stopping times σm with σm < T , σm → T,
a.s.(m→∞) such that for each m, Mσm∧· is a bounded local martingale on [0, τ] and
the adapted processes

Yσm∧·, 〈X〉σm∧·, κσm∧·,
1

κσm∧·
, ψσm∧·

are bounded on [0, τ]. Without loss of generality, we assume that the properties of
Condition T are satisfied with the same σm. By monotonicity, it suffices to show
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for each m

lim inf
n→∞

E[Nn
σm∧τ]E[〈Zn〉σm∧τ] ≥

1
6

E[κ · 〈Y〉σm∧τ]2.

Hence, we can suppose without loss of generality that M itself is a bounded
martingale on [0, τ] and that Y, 〈X〉, κ, 1/κ, ψ theirselves are bounded on [0, τ] as
well as that (6), (7), (8) are satisfied for σm ≡ τ.

Now, define uniformly bounded adapted processes κn and ψn on [0, τ] as

κn
s = κτn

j
, ψn

s = ψτn
j
, s ∈ [τn

j ∧ τ, τn
j+1 ∧ τ).

By Itô’s formula, we have

〈Zn〉t =
∫ t

0
(Xs − Xn

s )2d〈Y〉s

=

∫ t

0
(Xs − Xn

s )2|κn
s |2d〈X〉s +

∫ t

0
(Xs − Xn

s )2(κ2
s − |κn

s |2)d〈X〉s

=
1
6

∞∑
j=0

κ2
τn

j

{
(Xτn

j+1∧t − Xn
τn

j∧t)
4 − (Xτn

j∧t − Xn
τn

j∧t)
4
}

− 2
3

∫ t

0
|κn

s |2(Xs − Xn
s )3dXs +

∫ t

0
(Xs − Xn

s )2(κ2
s − |κn

s |2)d〈X〉s.

(9)

Let us see

lim
n→∞

E
[
E[Nn

τ ]
∫ τ

0
(Xs − Xn

s )2(κ2
s − |κn

s |2)d〈X〉s
]
= 0.

In fact, putting

εn = sup
0≤s≤τ

|κ2
s − |κn

s |2|, Vn = E[Nn
τ ]
∫ τ

0
(Xs − Xn

s )2d〈X〉s,

we can see that εn is uniformly bounded and Vn is uniformly integrable, so that

E[Nn
τ ]
∫ τ

0
(Xs − Xn

s )2|κ2
s − |κn

s |2|d〈X〉s ≤ εnVn → 0

in probability. Here we have used (6) and the 〈M〉-continuity of κ. Since εn is
bounded, εnVn is uniformly integrable, which implies E[εnVn]→ 0. Similarly, we
can show

E[Nn
τ ]E
[∫ τ

0
|κn

s |2(Xs − Xn
s )3dXs

]
= E[Nn

τ ]E
[∫ τ

0
|κn

s |2(Xs − Xn
s )3ψsd〈X〉s

]
→ 0.

Here we have used the 〈M〉-continuity of X instead of κ. So far, we have

lim inf
n→∞

E[Nn
τ ]E[〈Zn〉τ]

= lim inf
n→∞

1
6

E[Nn
τ ]E

 ∞∑
j=0

κ2
τn

j

{
(Xτn

j+1∧τ − Xn
τn

j∧τ
)4 − (Xτn

j∧τ − Xn
τn

j∧τ
)4
} .

Let us denote by E j[·] = E[·|Fτn
j∧τ] and put

X̌ j = Xτn
j+1∧τ − E j[Xτn

j+1∧τ], α j = E j[Xτn
j+1∧τ] − Xn

τn
j∧τ
, β j = Xτn

j∧τ − Xn
τn

j∧τ
.
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Then

E

 ∞∑
j=0

κ2
τn

j

{
(Xτn

j+1∧τ − Xn
τn

j∧τ
)4 − (Xτn

j∧τ − Xn
τn

j∧τ
)4
}

= E

 ∞∑
j=0

κ2
τn

j
((X̌ j + α j)4 − β4

j )


= E

 ∞∑
j=0

κ2
τn

j

{
E j[X̌4

j ] + 4α jE j[X̌3
j ] + 6α2

j E j[X̌2
j ] + α

4
j − β4

j

} .
Let us see that

lim
n→∞

E[Nn
τ ]E

 ∞∑
j=0

κ2
τn

j

{
α4

j − β4
j

} = 0.

In fact, putting
α̂ j = E j[Xτn

j+1
] − Xτn

j
,

it suffices to observe that

lim
n→∞

E[Nn
τ ]E

 ∞∑
j=0

κ2
τn

j
α̂4

j

 = 0, lim
n→∞

E[Nn
τ ]E

 ∞∑
j=0

κ2
τn

j
|α̂ j|3|β j|

 = 0,

lim
n→∞

E[Nn
τ ]E

 ∞∑
j=0

κ2
τn

j
α̂2

jβ
2
j

 = 0, lim
n→∞

E[Nn
τ ]E

 ∞∑
j=0

κ2
τn

j
|α̂ j||β j|3

 = 0.

(10)

Let us prove (10). Let C be a generic constant and put Q j = 〈X〉τn
j+1∧τ − 〈X〉τn

j∧τ.

E[Nn
τ ]E

 ∞∑
j=0

κ2
τn

j
α̂4

j

 ≤ CE[Nn
τ ]E

 ∞∑
j=0

E j[Q j]4

 ≤ C
E[Nn

τ ]2 E

 ∞∑
j=0

E j[Q j]

 = CE[〈X〉τ]
E[Nn

τ ]2 ,

which converges to 0 since

0 <
〈X〉τ
Nn
τ
≤ sup

j≥0
Q j → 0, lim inf

n→∞
E[Nn

τ ] ≥ E[lim inf
n→∞

Nn
τ ] = ∞.

Next,

E[Nn
τ ]2E

 ∞∑
j=0

κ2
τn

j
|α̂ j|3|β j|


2

≤ CE[Nn
τ ]2E

 ∞∑
j=0

Q5
j

E
 ∞∑

j=0

Q jβ
2
j


≤ CE[〈X〉τ]

E[Nn
τ ]2 (E[〈Zn〉τ] + E[〈Ẑn〉τ])→ 0,

as well as

E[Nn
τ ]E

 ∞∑
j=0

κ2
τn

j
α̂2

jβ
2
j

 ≤ CE

 ∞∑
j=0

Q jβ
2
j

 ≤ C(E[〈Zn〉τ] + E[〈Ẑn〉τ])→ 0.

The last one of (10) follows from

E[Nn
τ ]E

 ∞∑
j=0

κ2
τn

j
|α̂ j||β j|2

 ≤ CE[Nn
τ ]E

 ∞∑
j=0

Q j|β j|2
 ≤ CE[Nn

τ ](E[〈Zn〉τ] + E[〈Ẑn〉τ])
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and Condition T.
Now, since

E j[X̌4
j ] + 4α jE j[X̌3

j ] + 6α2
j E j[X̌2

j ] = E j[X̌4
j ] + 6E j[X̌2

j ]

α j −
E j[X̌3

j ]

3E j[X̌2
j ]


2

− 2
3

E j[X̌3
j ]

2

E j[X̌2
j ]

and

E j[X̌4
j ] −

2
3

E j[X̌3
j ]

2

E j[X̌2
j ]
≥ E j[X̌2

j ]
2

by Lemma B below, we have

lim inf
n→∞

E[Nn
τ ]E[〈Zn〉τ] ≥ lim inf

n→∞
1
6

E[Nn
τ ]E

 ∞∑
j=0

κ2
τn

j
E j[X̌2

j ]
2

 .
On the other hand, by Cauchy-Schwarz and Jensen’s inequalities, it holds

E

 ∞∑
j=0

κτn
j
X̌2

j


2

=E

 Nn
τ∑

j=0

κτn
j
E j[X̌2

j ]


2

=E

√1 +Nn
τ

1√
1 +Nn

τ

Nn
τ∑

j=0

κτn
j
E j[X̌2

j ]


2

≤E[1 +Nn
τ ]E

(1 +Nn
τ )

 1
1 +Nn

τ

Nn
τ∑

j=0

κτn
j
E j[X̌2

j ]


2

≤E[1 +Nn
τ ]E

 Nn
τ∑

j=0

κ2
τn

j
E j[X̌2

j ]
2

 .
It follows then that

lim inf
n→∞

E[Nn
t ]E[〈Zn〉τ] ≥ lim inf

n→∞
1
6

E

 ∞∑
j=0

κτn
j
E j[X̌2

j ]


2

.

Notice that

E

 ∞∑
j=0

κτn
j
E j[X̌2

j ]

 = E

 ∞∑
j=0

κτn
j

{
(Xτn

j+1∧τ − Xτn
j∧τ)

2 − α̂2
j

}
and that

E

 ∞∑
j=0

κτn
j
α̂2

j

 ≤ CE

 ∞∑
j=0

Q2
j

 ≤ CE[〈X〉τ]
E[Nn

τ ]
→ 0.

It remains to observe that
∞∑
j=0

κτn
j
(Xτn

j+1∧τ − Xτn
j∧τ)

2 − κ · 〈X〉τ = 2
∫ τ

0
κn

s (Xs − Xn
s )dXs − (κ − κn) · 〈X〉τ,

and that

E
[∫ τ

0
κn

s (Xs − Xn
s )ψsd〈X〉s

]
→ 0, E[(κ − κn) · 〈X〉τ]→ 0,
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which follow from the bounded convergence theorem. ////

Lemma B: Let X̌ be a random variable with E[X̌] = 0 and E[X̌4] < ∞. Then

E[X̌4]
E[X̌2]2

− E[X̌3]2

E[X̌2]3
≥ 1.

The equality holds if and only if X̌ is a Bernoulli random variable.

Proof: This is known as Pearson’s inequality or Kurtosis-Skewness inequality.
The proof is as follows.

E[X̌3]2 = E[X̌(X̌2 − E[X̌2])]2 ≤ E[X̌2]E[(X̌2 − E[X̌2])2] = E[X̌2](E[X̌4] − E[X̌2]2).

////

Definition 4: A discrete hedging strategy {πn}n is said to be asymptotically
efficient if there exists a sequence of stopping times σm with σm < T, σm → T a.s.
such that for each m, it holds

lim
n→∞

E[Nn
σm ]E[〈Zn〉σm ] =

1
6

E[κ · 〈X〉σm ].

Theorem C: Consider the following strategy πn = {(τn
j , X̄ j)} j; for a deterministic

sequence hn with hn → 0,

τn
0 = 0, τn

j+1 = inf{t > τn
j ; |Xt − Xτn

j
|2 ≥ hn/κτn

j
, X̄ j = Xτn

j
.

Then, {πn}n ∈ T and {πn}n is asymptotically efficient.

Proof: Let us prove that {πn}n ∈ T . By Condition S, there exists a sequence
of stopping times σm with σm < T, σm → T a.s. such that for each m, Mσm∧· is a
bounded martingale and

Yσm∧·, 〈X〉σm∧·, κσm∧·,
1

κσm∧·
, ψσm∧·

are bounded. Suppose that there exists a set Ω′ ⊂ Ω such that

lim sup
n→∞

sup
j≥0
|〈X〉τn

j+1∧σm − 〈X〉τn
j∧σm | > 0

onΩ′. It implies that for all ω ∈ Ω′, there exists an interval [a, b] = [a(ω), b(ω)] such
that 〈X〉a(ω) < 〈X〉b(ω) as well as that X(ω) is constant on [a, b]. Hence P(Ω′) = 0.

Let us show (8). By definition of τn
j and the boundedness of 1/κ there exists a

constant am with
sup

t≥0, j≥0
|Xσm∧τn

j+1∧t − Xσm∧τn
j∧t|2 ≤ amhn,

so that

(11) 〈Zn〉σm = (X − Xn)2 · 〈Y〉σm ≤ hna2
m〈X〉σm .

Besides, by the boundedness of κ, there exists a constant a′m with

(12) Nn
σm ≤ a′mh−1

n

Nn
σm∑

j=1

(Xτn
j
− Xτn

j−1
)2 ≤ a′mh−1

n

∞∑
j=0

(Xτn
j+1∧σm − Xτn

j∧σm )2,
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so that there exists a constant a′′m with

(13) E[Nn
σm ] ≤ a′mh−1

n (E[〈X〉σm ] + a′′m).

Hence E[Nn
σm ]〈Zn〉σm = E[Nn

σm ]〈Ẑn〉σm is uniformly bounded. To see (7), put

D j = E[〈X〉τn
j+1∧σm − 〈X〉τn

j∧σm |Fτn
j∧σm ]

and observe that by Itô’s formula,

D j ≤ hn‖1/κ·∧σm‖∞ − 2E

∫ τn
j+1∧σm

τn
j∧σm

(Xs − Xτn
j
)ψsd〈X〉s|Fτn

j∧σm


≤ hn‖1/κ·∧σm‖∞ + 2‖ψ·∧σm‖∞

√
hn‖/1κ·∧σm‖∞D j.

Hence for sufficiently large n,

D j/hn ≤
‖1/κ·∧σm‖∞

1 − 2‖ψ·∧σm‖∞
√

hn‖/1κ·∧σm‖∞
,

which is sufficient for (7) with the aid of (13).
So far we have {πn}n ∈ T . Now, let us prove the asymptotic efficiency. By (11),

we have that h−1
n 〈Zn〉σm is uniformly integrable and by (12) that hnNn

σm is uniformly
integrable. Hence it suffices to show

h−1
n 〈Zn〉σm → 1

6
κ · 〈X〉σm , hnNn

σm → κ · 〈X〉σm

in probability. By (9) and the definition of τn
j , the first convergence follows from

1
6

∞∑
j=0

κ2
τn

j
(Xτn

j+1∧σm − Xτn
j∧σm )4 = hn

1
6

∞∑
j=0

κτn
j
(Xτn

j+1∧σm − Xτn
j∧σm )2 + op(hn).

The second convergence follows from

Nn
σm = h−1

n

∞∑
j=0

κτn
j
(Xτn

j+1∧σm − Xτn
j∧σm )2 + op(h−1

n ).

////

4. The Black-Scholes model

In this final section, we review our results in the Black-Scholes model (4) and
present numerical results. For an European option payoff f (YT), put

Xt = ∂yP f (t,Yt), P f (t, y) =
∫

f (y exp(−σ2(T − t)/2 + σ
√

T − tz))φ(z)dz

as before. The hedging strategy X is what is called Delta. If f is a nonlinear convex
function, then we can apply the results in the preceding section with

M = σ(ΓY) ·W, κ = Γ−1, Γt = ∂
2
yP f (t,Yt).

Note that Γ is what is called Gamma.
By Theorem C, an asymptotically efficient strategy is given by

τn
0 = 0, τn

j+1 = inf{t > τn
j ; |Xt − Xτn

j
|2 ≥ hnΓτn

j
}, X̄n

j = Xτn
j
.
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It is easy to see that

τn
0 = 0, τn

j+1 = inf{t > τn
j ; |Yt − Yτn

j
|2 ≥ hn/Γτn

j
}, X̄n

j = Xτn
j

also defines an asymptotically efficient strategy. It is quite nice that we can construct
these strategies by only calculating Delta and Gamma. It remains to choose a
constant hn. The optimal hn depends on the choice of C in the last section. Once C
is given, it is elementary to calculate the optimal one. It will be not a problem to
tune hn by an empirical rule in practice.

Table 1 presents a simulation result (10000 repetitions) for hedging call options
with strike price K = 80, 90, 100, 110, 120 in the Black-Scholes model with µ = 0.1,
σ = 0.3, T = 1.0, Y0 = 100. The columns ∆2/Γ, Karandikar, equidistant stand for

τn
0 = 0, τn

j+1 = inf{t > τn
j ; |Xt − Xτn

j
|2 ≥ 0.05Γτn

j
},

τn
0 = 0, τn

j+1 = inf{t > τn
j ; |Xt − Xτn

j
| ≥ 0.03},

τn
j = j/200

respectively.
For each of Zn

T, Nn
T,
√

Nn
TZn

T, the table presents mean, variance and maximum
of absolute values. The mean E[Nn

T] and the variance Var[Zn
T] are important in the

present context. The asymptotically efficient strategy ∆2/Γ is superior to the other
two as easily seen. This implies that an asymptotically efficient strategy has a nice
performance even in a realistic situation E[Nn

T] ≈ 200.
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