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ASYMPTOTICALLY EFFICIENT DISCRETE HEDGING

M. FUKASAWA

AsstrACT. The notion of asymptotic efficiency for discrete hedging is introduced
and a discretizing strategy which is asymptotically efficient is given explicitly. A
lower bound for asymptotic risk of discrete hedging is given, which is attained
by a simple discretization scheme. Numerical results for delta hedging in the
Black-Scholes model are also presented.

1. INTRODUCTION

This article considers hedging a derivative by dynamically rebalancing a port-
folio of underlying asset and riskless asset under a realistic condition. Namely, it
is supposed that the rebalancing is limited to occur discretely. In such a realistic
situation, a general future payoff cannot be hedged even in the Black-Scholes nor
the other complete market models. In incomplete market models, hedge-error
risk is decomposed into two parts: one coming from the incompleteness of the
market and the another coming from the fact that we cannot rebalance any port-
folio continuously. The aim of this article is to introduce a criterion of hedge-error
risk associated with the restriction of rebalancing and to construct a discretization
scheme which is efficient with respect to the criterion. We deal with the differ-
ence between a quantity which can be hedged by continuous rebalancing and a
quantity which can be realized by discrete rebalancing. Therefore, we are not con-
cerned with the portfolio selection in the usual sense but deal with construction of
discretization schemes for a given portfolio strategy.

This problem is reduced to analyzing discretization error of stochastic integrals.
Here, rebalancing times are corresponding to the partition for the Riemann sum
associated with a stochastic integral. Naturally, we suppose that the rebalancing
times are increasing stopping times. In the case that the times are equidistant,
Rootzén (1980) gave the convergence rate and the asymptotic distribution of the
discretization error. Bertsimas, Kogan and Lo (2000), Hayashi and Mykland (2005)
treated the same problem in the context of hedge-error. Tankov and Voltchkova
(2009) extends the results to discontinuous semimartingales. Gobet and Temam
(2001), Geiss (2005) among others gave asymptotic estimates in the L? sense. It
is usually not so difficult to extend the results to a non-equidistant partition as
long as the partition is deterministic. However, it is not so natural to restrict that

Masaaki Fukasawa, Center for the Study of Finance and Insurance, Osaka University.
1



2 M. FUKASAWA

the rebalancing times are deterministic from practical viewpoints. They should be
determined adaptively to, for example, the currently having number of shares, the
number of shares that should be currently held, and the current price of the un-
derlying asset. Nevertheless, it remains an open problem to construct an optimal
strategy of rebalancing times. Martini and Patry (1999) considered the minimiza-
tion of L? hedge-error under the risk-neutral measure in the Black-Scholes model.
They analyzed the optimal stopping times given a fixed number of transactions:
their existence, uniqueness and numerical construction. This article takes a dif-
ferent approach to the discrete hedging problem taking the following aspects into
consideration; 1) there is no need to fix the number of transactions in practice as
far as it is finite, 2) it is not so clear which probability measure we should take
in the L? minimization problem, and 3) an explicit construction of a discretization
scheme is preferable even if it is only an approximation of the optimal solution.

We develop an asymptotic theory to tackle the discrete hedging problem. The
notion of asymptotic efficiency for discrete hedging is introduced and a discretiz-
ing strategy which is asymptotically efficient is given explicitly. A lower bound
for asymptotic risk of discrete hedging is given, which is attained by a simple
discretization scheme. Numerical results for delta hedging in the Black-Scholes
model are also presented.

2. ForMuLATION

2.1. Notation and Definitions. Here we give a rigorous formulation of our prob-
lem. For the sake of brevity, we suppose that the risk-free rate is always 0 through-
out this article. Suppose that an asset price process Y is a continuous semimartin-
gale on a stochastic basis (QQ, ¥, {#}}, P). Denote by E the expectation with respect
to the measure P. If we write G - F for adapted processes G and F, it stands for the
stochastic integral or the Stiltjes integral of G with respect to F in case of F being
semimartingale or of bounded variation respectively. Fix a stopping time T which
stands for the maturity of a derivative. Since we are interested in the discretization
of hedging strategy, we suppose that a hedging strategy X defined on [0, T] is given
and the quantity

T
(1) XY= f X.dY,
0

is what we should replicate. Due to our restriction of rebalancing, the quantity
T o
() XY= j(; XgdYs = Z(; X;‘I(Y’[’j’ﬂ/\T = Yorat)
]:

is what we can realize, where we define X" as

X! = X;’, s€ [T;’ AT, T7+1 AT)
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with random variables }_(;‘ which are ﬁy -measurable for each j > 0. Here, T’]? are
stopping times such that

0=15<1] <-~-<'c;' <..., as,
and that for any stopping time 7 such that 7 < T, it holds
(©)] N7 :=max{j > 0;7] <1} <00, as.

Note that T;’ stands for j-th rebalancing time and N is the number of transactions
up to time 7. The problem treated here is the fact that even if X; is given explicitly
for any s € [0,T], we can only rebalance our portfolio discretely in time. For
example, in the Black-Scholes world

(4) dYt = yytdt + UYtth,

the future payoff f(Y7) can be hedged by continuous rebalancing as

T
forn =P, Y + [ Xy,
0
where
Xi = d,Ps(t, Y1), Pe(t,y) = f f(yexp(—=a*(T = £)/2 + 6 VT — t2))p(2)dz.

Though the hedging strategy X is given explicitly here, what we can have in practice
is the sum of an initial constant and the Riemann sum of (2). The stochastic part of
the corresponding hedge-error is then given by

Z"=X-Yy-X"-Y.

Our aim here is to estimate Z" and to construct an optimal sequence of (T;?, X;’) in
some sense. The simplest strategy (stopping times) is equidistant one;

T7 = jhn, ]: 0/1/"'/
for a positive constant /i, > 0. We can consider, for example,

1 =0, T, = inf{t > 71X, - X7;1|2 = hy,)

on the other hand. We want to choose a strategy among these many candidates.
Here we explain the role of the index n. This is for an asymptotic argument of

n — oco. By the nature of the problem, the durations of transactions T;.IH

considered sufficiently small relative to [0, T]. For example, if the maturity is one

- T;l can be

year T = 1 and if the portfolio is rebalanced approximately every weekday, then
T7+1 - T;’ ~ 1/250. Therefore, dealing with a sequence 7" = {T';} j with ’L'7+1 - T;l -0
asn — oo, we can approximate to quantities associated with Z" by their limits. This
asymptotic argument enables us to derive a simple lower bound of asymptotic risk
as well as a strategy which attains the lower bound. The precise description of the
asymptotic condition is given later. We call the sequence {r"}, of the sequences

" = {(T’]?, )_(’].1)} j a discrete hedging strategy.
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It is simplest and most natural to take X7 = Xp for each j > 0 as a discrete
approximation of the stochastic integral. Put

7"=X-Y=-X"-Y

with

X! = XT»/;, s€ [T;? AT, T?H AT).
We say X" is natural and 7" is natural if X" = X". Note that there is no need to
take such a special form of X" from practical point of view. Nevertheless, we will

see that the lower bound of asymptotic risk is attained by a natural strategy.

2.2. Discrete Hedging Risk. Since the hedge-error is given by Z", we shall intro-
duce a risk criterion associated with this stochastic process. At the maturity T, the
hedge-error is Z7, so that the simplest criterion would be

E[1Z7P].

It is however not clear which measure E (or P) we should take. Martini and Patry
(1999) and many preceding studies on hedging in incomplete markets took an
equivalent martingale measure as E. If it is the case, Z" = (X — X") - Y is a local
martingale, so that
ENZ3P] = EKZ")1]

provided that (Z")r is integrable. Notice that (Z") can be interpreted as the volatil-
ity of Z", so that it also serves as a criterion of hedge-error risk. Taking this into
consideration, we introduce

©) E[(Z")1]
as our risk criterion. We stress that E is not necessarily an equivalent martingale
measure here. We will see later that an asymptotically efficient strategy with
respect to the risk defined as (5) does not depend on E. This is important because,
for example, it is well-known that drift parameter estimation for the physical
measure is difficult in a finite horizon.

Now, we fix our stochastic basis (QQ, ¥, {;}, P) and introduce several definitions.
Definition 1: An adapted process ¢ is said to be locally bounded on [0, T) if there

exists a sequence of stopping times ™ with ¢ < T, 0™ — T a.s. such that @gn,. is
bounded.

Definition 2: An adapted process M is said to be a local martingale on [0, T) if
there exists a sequence of stopping times ¢” with ¢ < T, 0™ — T a.s. such that
Mn . is a bounded martingale.
Definition 3: An adapted process ¢ is said to be F-continuous for an increasing
continuous adapted process F if ¢ is continuous and for any stopping times 71, 7,
with 71 < 75 F;, = F,, @ is constant on the interval [y, 72].

Let us assume the following structure condition:

Condition S: Y is a one-dimensional continuous semimartingale and there exist
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(1) a continuous adapted process M which is a local martingale on [0, T),
(2) an adapted process i which is locally bounded on [0, T)
(3) an (M)-continuous adapted process « which is positive on [0, T)

such that it holds
X=Xo+9-My+M, (Y)=1x*(X)
on [0, T].

The above structure condition holds, for example, in the preceding Black-Scholes
model (4) with

M=0(YT)-W, k=T"", T; = 9;P(t,Y))

provided that the payoff f is a nonlinear convex function. The case f is not convex
as in hedging the digital options remains for further research. It also remains to
include the case Y is multi-dimensional and discontinuous.

3. MAIN RESULTS: ASYMPTOTIC EFFICIENCY

The notion of the asymptotic efficiency for discrete hedging and an asymptot-
ically efficient strategy are given in this section. It should be noted first that our
risk (5) converges to 0 as n — oo if, for example,

sup IT;’Jr1 AT - T;l AT| =0, sup. IX;' - Xijl -0
j20 0<j<Ng:

in probability. The more frequently is the portfolio rebalanced, the less hedge-error

does it result in. To make the problem realistic, we introduce a cost for rebalancing.

Let us consider minimizing
C(E[N7], E{Z").])

for a given stopping time 7 with 7 < T and for a given function C : [0, 0)? — [0, )
which is increasing in both variables. Suppose for a while that we are given such
an inequality that

EINJIEKZ").] = K

with a constant K > 0 depending on 7 for any discrete hedging strategy. Then
apparently

C(EIN7], EKZ")<]) = C(E[N7], K/E[N7]),

so that if there exists a discrete hedging strategy {rn"}, such that it attains the lower
bound K for each n and 7 and E[N}] — oo (n — o0), then the solution of the
minimization is given by 7" for a certain n which minimizes C(E[N?], K/E[NZ7]). In
the following, we realize this idea in an asymptotic sense. Let us introduce a class
of discrete hedging strategies which seems sufficiently large. Denote by 7~ the class
of discrete hedging strategies {(T;’, X';’)} jn satisfying the following condition.
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Condition T: There exists a sequence of stopping times ¢” with 0" < T, 0" — T,
a.s., (m — oo0) such that for each m,
(6) sup |<X>T’f JAa™ T <X>T"’/\Um| - O/
0 j* i

in probability as n — oo, there exists a deterministic sequence K, , with K, ,, — o
(n — o0) such that
(7) E[Nﬁm] sup E[<X>’T;'+l/\0"" - <X>’I;l/\0m |7'-7;’/\o'”]/ Km,n sup |Xr;?/\a"’ - X:}’/\gml

20 20

are uniformly bounded in n, and
®) EING. KZ"gn, EINGu(Z" g

are uniformly integrable in 7.

Note that (Z") = (X — X")? - (Y). Condition T is satisfied if, for example, it holds
that d(X); = g:dt for such an adapted process g that both g and 1/g are locally
bounded on [0, T) and that

sup |t} AT =7} AT|<ahy, Np<a/hy, sup |X}-XuoP <ah, as.
j20 0<j<N2
with a constant 2 and a sequence h, — 0.
In usual situations, the convergence (6) is weaker than the usual high frequency
assumption

sgpl’cyﬂ /\T—T? AT =0
j20
in probability. It turns out that (6) is more natural in various problems. In such an
asymptotic situation, the natural Riemann sum X" - Y converges to the stochastic
integral X - Y, so that it is not a serious restriction to suppose I)_(’]? — XT;;I — 0 as
in (7). The first quantities of (7) and (8) are related each other and their uniform
properties serve as a condition on the regularity of the sequence of stopping times
T'j?. The last one of (8) actually controls the difference between X" and X". Besides,
the integrability condition on (Z") is preferable in terms of minimizing the hedge-

error.

Theorem A: For any {r"}, € 7 and any stopping time 7 with t < T a.s., it holds
liminf E[N"]E[{Z").] > %E[K (X2

Proof: There exists a sequence of stopping times ¢” with 0™ < T, 0" — T,
a.s.(m — oo) such that for each m, M,» . is a bounded local martingale on [0, T] and
the adapted processes

1
Yonns (Xamns Kgnny ——, Womn.
Kgma.
are bounded on [0, 7]. Without loss of generality, we assume that the properties of
Condition T are satisfied with the same ¢™. By monotonicity, it suffices to show
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for each m
1
tim inf E[NJup JE(Z")onne] 2 2Eli - (Ve
n—oo
Hence, we can suppose without loss of generality that M itself is a bounded
martingale on [0, 7] and that Y, (X), «, 1/x, 1 theirselves are bounded on [0, 7] as

well as that (6), (7), (8) are satisfied for 0™ = 7.

Now, define uniformly bounded adapted processes «" and ¢ on [0, 7] as
Kl = K, Yl = IPT;!, s € [T;’ AT, T;IH A T).

By It6’s formula, we have
t
(2" = f (X = XEPPdCY)s
0

t t
= f (X, = XD PA(X), + f (X, = XIP(2 = [ P)d(X)s
0 0

) o

1

~6 ; Ki}' {(XT?HM - X:}.’/\t)4 - (XT?At - X:;,At)‘l}
2 ¢
B §f P = X5)°dXs + f (Xs = X202 = I P)d(X)s.
0 0
Let us see
T
m E [E[Nﬂ f (Xs = X35 = |K:|2)d<x>s] =0.
0

In fact, putting

T
€" = sup [k — Il V"= E[N?]f (Xs = XU)?d(X)s,
0

0<s<t

we can see that €” is uniformly bounded and V" is uniformly integrable, so that
T
E[N7] f (Xs = XI5 = [k Pld(X)s < €"V" = 0
0

in probability. Here we have used (6) and the (M)-continuity of k. Since €" is
bounded, €"V" is uniformly integrable, which implies E[¢" V"] — 0. Similarly, we
can show

E[N"]E [ f ' [K"A(Xs — XZ)3dXS} = E[N"]E [ f ' [K"A(Xs — X§)3¢Sd<X)S] - 0.
0 0

Here we have used the (M)-continuity of X instead of k. So far, we have
liminf E[N?]E[{Z").]
n—oo

o)

2 n 4 n 4
Z K’L’}' {(XT}’»AAT - XT;‘/\T - (XT}'/\T - XT;.'/\T) }} .

= liminf %E[N;’]E
=0

Let us denote by E;[-] = E[’lﬁ;‘AT] and put

~

Xj = XI;‘H/\T - E]'[XT;‘H/\T]/ aj = E]'[XI;‘H/\T] - X,r[l;z,\_[/ ﬁ] = XT;’/\T - XZ

T'AT®
j
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Then

[ix {0y e = X0 ) = (e = m)‘*}}
j=0

(e8]

=E|) 12X+ a)t =B

=E

| /=0
Z = (E[[XI] + 4, [X3] + 602E,[X3] + ot - ﬁ?}} .
=0

Let us see that

In fact, putting

it suffices to observe that

lim E[NZ]E Z ] 0, lim E[NY]E Z Ki,;|&j|3|ﬁj|] =0,
| =0 i—0
(10) ! .
lim E[N7]E Z 3,, aip; ] 0, lim E[N”]E Z K§ﬂ|aj||5j|3] = 0.
n—00 n—oco i
[ /=0 =0

Let us prove (10). Let C be a generic constant and put Q; = (X)T»;+1 AT — (X)T»; AT-

ZE[Q, ] TN ZE (of)

o)

L

=0

_ CEKX)]

PRI BN

< CE[N"]E

which converges to 0 since

0< <NZT <supQ;—0, hmme[N”] > E[hm 1an”] =
j=0
Next,
- 2
EINIPE| ) <2a;PBl| < CEINZPE Z Q5] [Z Q,ﬁ]]
=0
CE[{X)-] " NN
< i ELZ + EL2)D) = 0,
as well as
EINZIE| ) 2 a3f7| < CE |} Qif}| < C(EKZ")e] + EZ"):]) — 0.
j=0 j=0

The last one of (10) follows from

(e8]

2 A 2
D khlalIp

j=0

8

E[N?IE < CE[N?]E < CEINFI(E[(Z"):] + E(Z").])

Y Qg
=0
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and Condition T.
Now, since

. . . . . EXY L EIXCPR
Ej[X{]+ 4ajEj[X3] + 6a7E[X]] = E[X}] + 6E;[X7]| -z

" UBEIX3) 3 EIX
and -
Ei[X’]
- 25 o
e %212
Ej[X;] 3 E ] > Ej[X(]
i
by Lemma B below, we have
S n n NP | n . 2 212
liminf E[N?]E[{(Z"),] = liminf —E[N]E E Ko Ej[X5]
n—oo n—o 6 — i ]
j=

On the other hand, by Cauchy-Schwarz and Jensen’s inequalities, it holds

) 2 [ N? 2
w2 _ 2
E[Z Ko X2| =E ZKT?E]'[X]»]
=0 | j=0
[ Nn 2
=E|[+/1+ N" K nE
NVZ 2
<E[1+N"E|(1+N") ! Z ke Ei[X?]
= T T 1 + N,};l - T/- ] ]
- NH
<E[1+N"IE Z KL EXP
] 0
It follows then that
2
liminf E[N"]E[(Z").] > lim inf - Z o E{[X2]
n—o0 t T_naoo6 — T/'] ]
]:
Notice that
T”E Xz] =E [Z K’l‘;’ {(XT}IH/\T - XT?AT)Z - &?}]
j= j=0
and that
< CELX)]
2
E ; xea?| < CE Z Q| < ey
It remains to observe that
Ll T
Z KT'/’(XT;'H/\T - T /\T) =K (X) = zf K?(Xs - X?)dxs - (K - Kn) AX)z,
j=0 0
and that

E [fT K (X = X?)¢sd<X>s] =0, E[(x —«")-(X):] =0,
0



10 M. FUKASAWA

which follow from the bounded convergence theorem. /1]
Lemma B: Let X be a random variable with E[X] = 0 and E[X*] < co. Then

E[X*] E[X°] o1

E[j(z]z E[X2]3 -

The equality holds if and only if X is a Bernoulli random variable.

Proof: This is known as Pearson’s inequality or Kurtosis-Skewness inequality.
The proof is as follows.

E[X°F = E[X(X* - E[X*])]* < E[X*|E[(X® - E[X*])’] = E[X*I(E[X*] - E[X*P).

i
Definition 4: A discrete hedging strategy {n"}, is said to be asymptotically
efficient if there exists a sequence of stopping times ¢" with ¢ < T, 0" — T a.s.
such that for each m, it holds

1
lim E[NG. JEKZ")on] = g Elie - (X)orl-

Theorem C: Consider the following strategy n"* = {(T?, X;)}j; for a deterministic
sequence h, with h, — 0,

_ _ . 2 S
75 =0, T;’+1—1nf{t>’r;’,|Xt—XT7| Zhn/KT;«, Xj—XT»;.

Then, {r"}, € 7 and {n"}, is asymptotically efficient.

Proof: Let us prove that {n"}, € 7. By Condition S, there exists a sequence
of stopping times 0™ with ¢” < T, 0™ — T a.s. such that for each m, Mgm,. is a
bounded martingale and

1
Yonn, (Xyonns Komn, ——, Ponn.
Kgma.
are bounded. Suppose that there exists a set ()’ C Q) such that

lim sup sup [(X)er nov = (Xerngel > 0
n—oco >0
on (Y'. It implies that for all w € (Y, there exists an interval [4, b] = [a(w), b(w)] such
that (X),(w) < (X)(w) as well as that X(w) is constant on [a, b]. Hence P(Q)’) = 0.
Let us show (8). By definition of 77 and the boundedness of 1/« there exists a
constant a,, with

2
sup |Xo’"/\7;.’+1/\t - XU”’/\T;‘/\L‘| < amhm

£20,j20
so that
(1) (2o = (X = X" - (Vo < (XD
Besides, by the boundedness of «, there exists a constant a;, with
N 0
(12) Nl S @yl ) (Xer = Xon P <l ) (Xer pgn = Xeraon)?,

j=1 j=0
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so that there exists a constant a;, with
(13) E[N".] < a, i, (E[(X)on] + al).
Hence E[N!,, KZ")on = E[Ng,,,](Z” Yo is uniformly bounded. To see (7), put
Dj = E[<X>T;’+1/\Um - <X>T;’/\U'” |7’~17,/\am]
and observe that by It6’s formula,
T;'H/\Gm
Df < hyll1/xponlleo — 2E f (Xs - XT}’)IPsd<X>s|7j’c}’/\am
T

" AGT
]

< hall1/ % ngmlloo + 2l ngmlloo VEnll/ 1K agn |l Dj-

Hence for sufficiently large 1,

Dy < 11/ 00l ,
1= 2l[gppgrlleo VRall/ 11 Aol
which is sufficient for (7) with the aid of (13).
So far we have {7}, € 7. Now, let us prove the asymptotic efficiency. By (11),
we have that ,'(Z" ), is uniformly integrable and by (12) that /" N"

am

is uniformly
integrable. Hence it suffices to show

1

hy(ZMyon — < Xhan, KNG = K+ (X

o

in probability. By (9) and the definition of T;?, the first convergence follows from

1y 1y
2 4 2
6 Z K’[" (X’[;‘+1AU'” - XT;.I/\O"‘) = hng Z KTFI’I (XT}1+1A0HZ - X—[}l/\gm) + Op(hﬂ)'
j:O ! ]':0
The second convergence follows from
(o]
N&, = I X — Xoipon)? + 0y (I,
om — My KT'/’( ’I;’H/\O’m T;‘/\a"’) + Op( n )
j=0

i

4. Tue BLACK-SCHOLES MODEL

In this final section, we review our results in the Black-Scholes model (4) and
present numerical results. For an European option payoff f(Yr), put

X = dyPs(t, Y1), Ps(t,y) = ff(y exp(=0%(T — t)/2 + o VT — tz))p(2)dz
as before. The hedging strategy X is what is called Delta. If f is a nonlinear convex
function, then we can apply the results in the preceding section with
M=0(Y)-W, k=T"", T, = Pf(t, Y)).

Note that I' is what is called Gamma.
By Theorem C, an asymptotically efficient strategy is given by

=0, Ty =inflt > TS 1X ~ Xef 2 o), X7 = Xo
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It is easy to see that

— — . 2 N —
75 =0, T;IH = inf{t > T;l, lY; — YTr]; > hn/FT»; |3 X7 = XT;;

also defines an asymptotically efficient strategy. Itis quite nice that we can construct
these strategies by only calculating Delta and Gamma. It remains to choose a
constant /1,. The optimal &, depends on the choice of C in the last section. Once C
is given, it is elementary to calculate the optimal one. It will be not a problem to
tune h, by an empirical rule in practice.

Table 1 presents a simulation result (10000 repetitions) for hedging call options
with strike price K = 80,90, 100, 110, 120 in the Black-Scholes model with u = 0.1,
0=0.3,T=1.0,Y, = 100. The columns A%/T, Karandikar, equidistant stand for

75 =0, T}, =inf{t > 751X - X77|2 > 0.05Tx},

j+1
75 =0, T;?H = inf{t > T?;|X,§ - XT}:I > 0.03},
T = j/200

respectively.

For each of Z%, N, /N}Z7, the table presents mean, variance and maximum

of absolute values. The mean E[N’}] and the variance Var[Z] are important in the
present context. The asymptotically efficient strategy A%/T is superior to the other
two as easily seen. This implies that an asymptotically efficient strategy has a nice
performance even in a realistic situation E[N}] ~ 200.
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