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Time series and breaks

Many economic time series occasionally exhibit dramatic breaks in
their behavior. Such breaks may concern the level, the variability,
the serial correlations..

They are often associated with events such as financial crises or
abrupt changes in government policy. For instance, many economic
variables tend to behave differently during economic downturns.

When models are fitted over sub-periods of long times series, one
often detects significant changes in the estimated parameter values.
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Old method

The main approach consisted in fitting different models over
different subperiods. For instance, for AR(1) models :

yi = Piyi—1+e, ift <ty
ye = ®oyi1+e, ift>t.
Problems:

Sub-models are not related.
Arbitrary choice of the break date tp.
Assumption of non stationarity.
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A simple way to model dynamic changes

AR(1) model with random AR coefficient :

ye = O(Ar)yr—1 + €,

where (A;) is a discrete random variable.

We need a structure over the latent variable to describe the
probability law of the data.

Simple approach: A; is the realization of a Markov chain
(finite-state).

Such a model is called Markov-Switching (MS) AR(1) model.
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Hidden Markov Model Finite-state Markov chains

Properties of Hidden Markov chains

Definition

Let Ag,Aq,--- € S ={1,---,d} a sequence of random variables.

It is a Markov chain if

P(Ar=jlAr1=1i) = PAr=jlAr1=iDr2=e_5---,A¢=e)
p(i,J);

for any t and (i,j,e;_2,--- ,e) € StHL.

The set S is called the state space of the process and the p(i, )
are the transition probabilities.
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Hidden Markov Model

Finite-state Markov chains
Properties of Hidden Markov chains

The law of the Markov chain is entirely defined by
(i) the inital probabilities

d
mo(i) = P(Do = i), mo(i) >0, i=1,--,d, > m(i) = 1.
i=1

(ii) the transition probability matrix

P = (p(i,J))1i<ij<d-
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Hidden Markov Model Finite-state Markov chains

Properties of Hidden Markov chains

High-order transitions

The k-th power of the transition matrix P* = (p()(i, j))1<ij<d
provides the k-th step transition probabilities:

(k)( J)=PA:=jlArk=1i),i,j€S, k>0.

Let
mo(1) P(A,=1)
my = : , and T, = :
770(d) IP)(An = d)
We have
T = P'mp_1, mn = Py, n>0.
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Hidden Markov Model Finite-state Markov chains

Properties of Hidden Markov chains

Invariant probability

A probability m on S is called invariant probability if

/ /
m=Pmx, =1

o If the limit law 74, := lim 7, exists, then it is an invariant
. n—oo
probability.
@ An invariant probability always exists (for a finite state space).

@ If mg = m where 7 is an invariant probability, then 7, = 7 for
all n > 0.
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Hidden Markov Model Finite-state Markov chains

Properties of Hidden Markov chains

Irreducibility, aperiodicity

It is possible for a chain starting in i to reach j if and only if
p(”)(i,j) > 0, for some n.

If it is true for all i and j, the Markov chain is called irreducible.

A state i is called aperiodic if
1 = ged{n; p'M(i,i) > 0}.

If all states verify this condition, the chain is aperiodic.
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Hidden Markov Model Finite-state Markov chains

Properties of Hidden Markov chains

Exponential convergence to the stationary law and

ergodicity

If the chain is irreducible and aperiodic, there is a stationary
distribution  and there exists K > 0 and 0 < p < 1 such that

1P\ (i, ) — 7(j)| < Kp",

for all states i and j.

Then under these conditions, we have the ergodicity property

iZf(At) — EA[f(Ad)] = ) w(i)f(i), as.
t=1 ]

n—oo

for any function f(.). An irreducible, aperiodic and stationary
Markov chain is called ergodic.
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Hidden Markov Model

Finite-state ov chains

Properties of Hidden Markov chains

© Hidden Markov Model

@ Properties of Hidden Markov chains
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Hidden Markov Model

Finite-state Markov chains
Properties of Hidden Markov chains

Definition

A process (X;) follows a HMM if

(i) conditionally to a hidden Markov chain (A;), the variables
Xo,, X1, -+ are independent.

(ii) the conditional law of Xs given (A¢) only depends on As.
Canonical HMM:

et = o(Ae)ne,
such that
e 0<o(l) < - <o(d).
@ (n¢) is an iid sequence of variables E[n:] = 0 and Var(n;) = 1.
e (A;) is an ergodic Markov chain on S.

e the sequences (7;) and (A;) are independent.
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Hidden Markov Model Finite-state Markov chains

Properties of Hidden Markov chains

Unconditional law

If P,,, = Nr(0,1), then the distribution of €; is a mixture of
centered Gaussian variables such that its density corresponds to

For any law of ¢, the marginal moments of (¢;) can be obtained as

Elet] = E[o" (Ad)[E[n;] = ZU K)E[n¢].
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Stationarity of S-AR(1) model
MS-ARMA(p,q) process Stationarity of S-ARMA(p,q) model

Definition

The MS-ARMA(p,q) model is defined as

P q
Xe = c(De)+ D ai(Ae)Xe—i +er 4+ D> bj(Ar)er—;.
i=1 j=1
€t == E(At) = U(At)’r]t, ]P)'ﬂt = E(O, 1) ||d,

with (A¢) an ergodic Markov chain on S and independent of (7).
Besides aj(.), bj(.), c(.) € R and o(.) > 0.

This model contains the HMM as a particular case.

Except the case p = 0, the existence of stationary solutions require
additional conditions.
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Stationarity of the MS-AR(1) model

MS-ARMA(p,q) process Stationarity of the MS-ARMA(p,q) model

Notations

For any functions f : S — Mpxm(R) and for all non-negative
intergers i, n, m, let

POLF(L) -+ p(d 1)F(1)

PO)(f) = : : () = (
pD(1,d)f(d) - p(d,d)f(d) /

e If i =1, then we denote P(f) = P()(f).

o for f =1, let P=P(1) = (p(j,i)) the transpose of the
transition matrix.
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Stationarity of the MS-AR(1) model

MS-ARMA(p,q) process Stationarity of the MS-ARMA(p,q) model

Computation of expectations

Lemma

Let fy, - - - , fx functions defined on S — Mpxn(R). For k > 0,
then

E[fo(A0)A(De-1) - Fi(Ar_)] = TP(f) - - - P(fe_1)N(f),

with | = (Iny- -+, In) @ n x ndmatrix with I, the identity matrix of
size n.
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Stationarity of the MS-AR(1) model
Stationarity of the MS-ARMA(p,q) model

MS-ARMA(p,q) process

© MS-ARMA(p,q) process
@ Stationarity of the MS-AR(1) model
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Stationarity of the MS-AR(1) model

MS-ARMA(p,q) process Stationarity of the MS-ARMA(p,q) model

MS-AR(1) without constant

Xt = Q(At)Xt_l + O'(At)nt.

Issues:
@ Existence of a strictly sationary solution.
@ Existene of a 2nd order statioanry solution.

We look for non-anticipative solutions, idest solutions as

Xe = f("?r, Atﬂ?rfl, JAVEE PRI )
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Stationarity of the MS-AR(1) model
Stationarity of the MS-ARMA(p,q) model

MS-ARMA(p,q) process

By iteration, for kK > 1, then

Xt = a At) o Q(At_k+1)xt_k
k

By convention, a(A¢)---a(A—it1) =1if i =0.
Solutions should be given by

k—1

Xt' - Za(At) cte a(At*nﬁ’l)O’(At*n)ntin’
i=0

under the condition the series convergences almost surely.
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Stationarity of the MS-AR(1) model

MS-ARMA(p,q) process Stationarity of the MS-ARMA(p,q) model

Cauchy root test

We use the n-th root Cauchy test to derive an absolute
convergence condition. To do so, let

up=a(A¢)--a(A¢—nt1)o(De_n)nt—n.
We have
unff = o2 log [a(Ae k11| + l08(0(Be) e}
nk:l n

Since lim sup n~!log(a(A¢_n)|nt—n|) = 0 a.s., we obtain by the
ergodic theorem

lim sup |un|» = exp{E[log a(A]]}.
This provides the condition
E[log |a(A¢)]] < 0.
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Stationarity of the MS-AR(1) model
MS-ARMA(p,q) process Stationarity of the MS-ARMA(p,q) model

Uniqueness

Under the previous condition
ZQ(A a(At—nt1)0(At—n)Nt—n, as.

is properly deflned and is solution of the MS-AR(1) model.
Suppose there exists another strictly stationary solution (X;"):
k—1
Xi =a(Ar)--- a(At_k+1)Xf_k+Za(At) o a(Armip)o(De—i)ne—i-
k=1
Then
[ Xe = Xi| < la(Ae) - a(De—ri 1) [ X k] + Rk,
such that R, — 0 and |a(A¢) - - - a(A¢—k41)| =2 Oas..
—00
Consequently
X = X{ as.
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Stationarity of the MS-AR(1) model

MS-ARMA(p,q) process Stationarity of the MS-ARMA(p,q) model

Strict stationary condition

There exists a unique striclty stationary solution if

d
Ellog |a(A¢)[] = ) log|a(i)|x(i) < 0.

i=1

This solution is nonanticipative.
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Stationarity of the MS-AR(1) model

MS-ARMA(p,q) process Stationarity of the MS-ARMA(p,q) model

Second-order stationarity of the MS-AR(1) model

Existence in L2 of
o
X = ZRt,ka 7—\th,k = a(At) s 3(At—n+1)U(At—n)77t—n-
k=0
Using the L% norm, we have
o0
IXell <) IRkl
k=0
and

E[RE] = E[2%(A¢) - a*(Ar)]
= (1,---, )P"()N(c?).
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Stationarity of the MS-AR(1) model

MS-ARMA(p,q) process Stationarity of the MS-ARMA(p,q) model

Second-order stationarity of the MS-AR(1) model

Proposition
If

p(1,1)a*(1) -+ p(d,1)a*(1)
p(P(a%)) = p : : <1,
p(1,d)a*(d) - p(d,d)a*(d)

()~(t) is the unique second order stationary and non-anticipative
solution of the MS-AR(1) model.

Conversly, if p(P(a?)) > 1, there is no second order stationary and
non-anticipative solution.
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Stationarity of the MS-AR(1) model
Stationarity of the MS-ARMA(p,q) model

MS-ARMA(p,q) process

© MS-ARMA(p,q) process

@ Stationarity of the MS-ARMA(p,q) model
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Stationarity of the MS-AR(1) model

MS-ARMA(p,q) process Stationarity of the MS-ARMA(p,q) model

Vectorial representation

Vectorial dynamic: Zt = AtZt,1 + Btv with Bt = Ct + Ztnt,

G = (C(At),o,-” ,0,--- 70)/€Rp+q7
Zt — (Xt7 U 7Xt—p+17 €ty 75t—q+1)/ S Rp+q7
Zt = (O'(At),"‘ ,0,0'(At),“' ,0)

A:) b(A
A= <3(0 ! (J t)> € M(R)(p+q)x(p+4)-
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MS-ARMA(p,q) process Stationarity of the MS-AR(1) model

Stationarity of the MS-ARMA(p,q) model

Vectorial dynamic: Z; = A;Z;—1 + B:.

a1(A¢) ap(At)
1 0 0
a(At) = 0 1 0 3
0 1 0
bi(Ay) bg(A¢) 0 O
0 0 0 1 0
0 1 0 0 O

o
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MS-ARMA (p,q) process Stationarity of the MS-AR(1) model

Stationarity of the MS-ARMA(p,q) model

Top Lyapunov exponent

The top Lyapunov exponent of the sequence (a(A:)) is defined as

Y= i Bl g la(B0aAe 1)+ a(Aa)]]

a.s.

t

) 1
tILngo ?Iog H;l;[la(At_i)”7

for any norm on M(R)pxp.

29/41



Stationarity of the MS-AR(1) model
Stationarity of the MS-ARMA(p,q) model

MS-ARMA(p,q) process

Strict stationarity condition

Proposition

Suppose v, < 0. Then, for any t € 7, the sequence
o
Zy = B + ZAt < Ar—k+1Be—k
k=1

converges almost surely and the process (X;) defined as the first
component of (Z;) is the unique strictly stationary solution of the
MS-ARMA(p,q) model.
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Likelihood computation
Estimation of MS-AR models

© Estimation of MS-AR models
@ Likelihood computation
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Likelihood computation
Estimation of MS-AR models

MS-AR(p) model

P
Xe =Y ai(Ar)Xe—i + o(A)ne, Py, = Nr(0,1).
i=1
Parameters of interest
0 = (p(171))7p(17d_1)77p(d7d_1)7
31(1)’ ... 7al(d), A 70(1)’ .. ,U(d))/.

The likelihood can be written by conditioning with respect to all
possible paths

(el’ cee eT)
of the Markov chain, with ¢; € §. The probability of this path is

P(ei,---,er) =P(Ar=e1,--- ,Ar =er) =n(e1)p(er, &) - - - p(er—1, er).
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Likelihood computation
Estimation of MS-AR models

Likelihood

For any path, we have a likelihood
T P
Lo (X, X7) = [[0eXe — > ax(ee) Xe—),
t=1 k=1

with ¢;(.) the density of Nr(0,02(i)).
The likelihood of the observations is

LT(Xla"' )XT;G) — Z L(;LM’ET)(XL"' ,XT)]P)(ela"' 7eT)‘

(61,~~~ ,eT)EST

This likelihood is not tractable in practice.

There are several methods to compute the likelihood:
algorithm based on a matrix product; the forward-backward
algorithm (Baum, 1972); Hamilton filter (1989).
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Likelihood computation
Estimation of MS-AR models

Hamilton filter

The method is based on the log-likelihood and provides filtered
probabilities of the regimes.

Neglecting the distribution of Xj, we have

.
log LT (X1, , X7:0) =) log fi(Xe[Xe1,--+, X1),
t=1
with
d .
ft(Xt|Xt—17"' ,Xl) = fo.‘(Xt‘Xt—la"' , X1, At :J)
j=1

IP)(AL“ :j|Xt717 e axl)-
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Likelihood computation
Estimation of MS-AR models

Hamilton filter

Let ) )
7Tt\t—1(J) = P(A¢ = j[Xe—1,- -, X1),
Wt\t(j) = P(Ar =j[Xe, -+, X1).
We have
. d . d . . .
7Tt+1|t(J) = le(At—‘rl =jlAs =i, Xe—1,- 7X1)7rt|t(l) = ZIP(’zj)Wt\t(’)a
j= j=
. (J) _ g(Xtv 3X1|At:./)ﬂ—(./)
e g(Xe, -+, X1) ’
f(x|A
using the formula P(A|X = x) = ’(:(()’() )IP(A).

Let

= ;(xt = an()Xe—x)
! k=1
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Likelihood computation
Estimation of MS-AR models

Hamilton filter

g(Xtu'” )X1|At :J)W(J)

7Tt|t(J) = 'g(th... , X1)
%g(xt_l, <o ,Xl‘At :J)W(./)
= | g(Xe, -+, X1)
%P(At =JjXee1, - X1)8(Xeo1, -+, Xd)

g'(Xt|Xt71a e 7X1)g(Xt717 e 7X1)
7¢(Z€}§))Wt\t—l(j)
(Xt|Xt 1, >X1)

¢(n(tj(§)) Tt|t— 10)

Z (b;]z() Wt\t—l(i)
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Likelihood computation
Estimation of MS-AR models

Hamilton filter

Finally, the sequences
7Tt|t71(j) = P(At :.j‘Xt—la T 7X1)7 7Tt|t(j) - P(Af :.j|Xf7 T 7X1)a
are obtained recursively by

d)(n(tj(;)) Tt|t—1 (J)
Z ? :E())) 7Tt\t—l(’.)

7Tt+1|t(j) = ;P(iaj)ﬂﬂt(i)'

7Tt|t(j) =

with initial values 7y)o(i) = (/).
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Likelihood computation
Estimation of MS-AR models

Hamilton filter in matrix form

Let
o(n:(1))
7Tt\t(l) 7Tt+1\t(1) o(1)
et = : s Teg1|t = : , Pr = :
7Tt|t(d) 7Tt+1|t(d) #(n:(d))
o(d)

Let ® the Hadamard product. We have

Teje—1 © Pt

Tttt = 7 o~ v T+l — Py
| U{Tye—1 © O¢} | |
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Likelihood computation
Estimation of MS-AR models

Hamilton filter in matrix form

We finally obtain the conditional log-likelihood

.
Lr(Xa,-, X7i0) =) log A(Xe|Xeo1,--+, X1),

t=1

with
fe(Xe| Xe—1, -+, X1) = L/{Trt|t—1 © b}
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Likelihood computation
Estimation of MS-AR models

Maximizing the likelihood

Maximizing the (log-)likelihood can be done by a classic
optimization procedure or the EM algorithm. The intuition is as

follows:

If in addition to the observations (Xi,--- , X7), one could observe
(A1, ,A7), we could easily estimate 6 and the initial law 7 by
MLE.

The EM algorithm alternates as follows: the E-step evaluates the
likelihood given the current value of the parameters; the M-step
maximizes the objective function computed in the E-step.
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Likelihood computation
Estimation of MS-AR models

The EM algorithm

E-step Suppose we have an estimate (G(k),ﬁ(()k)) of (6o, 7). Then
it makes sense to approximate the unknown log-likelihood by its
expectation given the observations (X1, -, X7) computed under

the law (Q(k),wék)).
M-step We aim at maximizing in (6, ) the log-likelihood
[’T(Xla T aXT; 6, 7T0|9(k)7 7T(()k))'
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