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Time series and breaks

Many economic time series occasionally exhibit dramatic breaks in
their behavior. Such breaks may concern the level, the variability,
the serial correlations..

They are often associated with events such as financial crises or
abrupt changes in government policy. For instance, many economic
variables tend to behave differently during economic downturns.

When models are fitted over sub-periods of long times series, one
often detects significant changes in the estimated parameter values.
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Old method

The main approach consisted in fitting different models over
different subperiods. For instance, for AR(1) models :

yt = Φ1yt−1 + εt , if t ≤ t0,
yt = Φ2yt−1 + εt , if t > t0.

Problems:

Sub-models are not related.
Arbitrary choice of the break date t0.
Assumption of non stationarity.
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A simple way to model dynamic changes

AR(1) model with random AR coefficient :

yt = Φ(∆t)yt−1 + εt ,

where (∆t) is a discrete random variable.

We need a structure over the latent variable to describe the
probability law of the data.

Simple approach: ∆t is the realization of a Markov chain
(finite-state).

Such a model is called Markov-Switching (MS) AR(1) model.
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Finite-state Markov chains
Properties of Hidden Markov chains

Definition

Let ∆0,∆1, · · · ∈ S = {1, · · · , d} a sequence of random variables.
It is a Markov chain if

P(∆t = j |∆t−1 = i) = P(∆t = j |∆t−1 = i ,∆t−2 = et−2 · · · ,∆0 = e0)
= p(i , j),

for any t and (i , j , et−2, · · · , e0) ∈ St+1.

The set S is called the state space of the process and the p(i , j)
are the transition probabilities.
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Law

The law of the Markov chain is entirely defined by

(i) the inital probabilities

π0(i) = P(∆0 = i), π0(i) ≥ 0, i = 1, · · · , d ,
d∑

i=1

π0(i) = 1.

(ii) the transition probability matrix

P = (p(i , j))1≤i ,j≤d .
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High-order transitions

The k-th power of the transition matrix Pk = (p(k)(i , j))1≤i ,j≤d
provides the k-th step transition probabilities:

p(k)(i , j) = P(∆t = j |∆t−k = i), i , j ∈ S, k ≥ 0.

Let

π0 =

π0(1)
...

π0(d)

 , and πn =

P(∆n = 1)
...

P(∆n = d)

 .

We have
πn = P′πn−1, πn = P′nπ0, n ≥ 0.
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Invariant probability

A probability π on S is called invariant probability if

π = P′π, π′ι = 1.

If the limit law π∞ := lim
n→∞

πn exists, then it is an invariant

probability.

An invariant probability always exists (for a finite state space).

If π0 = π where π is an invariant probability, then πn = π for
all n ≥ 0.
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Irreducibility, aperiodicity

It is possible for a chain starting in i to reach j if and only if

p(n)(i , j) > 0, for some n.

If it is true for all i and j , the Markov chain is called irreducible.

A state i is called aperiodic if

1 = gcd{n; p(n)(i , i) > 0}.

If all states verify this condition, the chain is aperiodic.
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Exponential convergence to the stationary law and
ergodicity

Proposition

If the chain is irreducible and aperiodic, there is a stationary
distribution π and there exists K ≥ 0 and 0 < ρ < 1 such that

|p(n)(i , j)− π(j)| ≤ Kρn,

for all states i and j.

Then under these conditions, we have the ergodicity property

1

n

n∑
t=1

f (∆t) −→
n→∞

Eπ[f (∆t)] =
d∑

i=1

π(i)f (i), a.s.

for any function f (.). An irreducible, aperiodic and stationary
Markov chain is called ergodic.
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Finite-state Markov chains
Properties of Hidden Markov chains

Definition

A process (Xt) follows a HMM if

(i) conditionally to a hidden Markov chain (∆t), the variables
X0, ,X1, · · · are independent.

(ii) the conditional law of Xs given (∆t) only depends on ∆s .

Canonical HMM:

εt = σ(∆t)ηt ,

such that

0 < σ(1) < · · · < σ(d).

(ηt) is an iid sequence of variables E[ηt ] = 0 and Var(ηt) = 1.

(∆t) is an ergodic Markov chain on S.

the sequences (ηt) and (∆t) are independent.
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Properties of Hidden Markov chains

Unconditional law

If Pηt = NR(0, 1), then the distribution of εt is a mixture of
centered Gaussian variables such that its density corresponds to

f (x) =
d∑

k=1

π(k)
1

σ(k)
ϕ(

x

σ(k)
)

For any law of ηt , the marginal moments of (εt) can be obtained as

E[εrt ] = E[σr (∆t)]E[ηrt ] =
d∑

k=1

σr (k)π(k)E[ηrt ].
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Stationarity of the MS-AR(1) model
Stationarity of the MS-ARMA(p,q) model

Definition

The MS-ARMA(p,q) model is defined as Xt = c(∆t) +
p∑

i=1
ai (∆t)Xt−i + εt +

q∑
j=1

bj(∆t)εt−j .

εt = ε(∆t) = σ(∆t)ηt , Pηt = L(0, 1) i.i.d.,

with (∆t) an ergodic Markov chain on S and independent of (ηt).
Besides ai (.), bj(.), c(.) ∈ R and σ(.) > 0.

This model contains the HMM as a particular case.

Except the case p = 0, the existence of stationary solutions require
additional conditions.
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Notations

For any functions f : S →Mn×m(R) and for all non-negative
intergers i , n,m, let

P(i)(f ) =

p(i)(1, 1)f (1) · · · p(i)(d , 1)f (1)
...

...

p(i)(1, d)f (d) · · · p(i)(d , d)f (d)

 ,Π(f )) =

(
π(1)f (1)

...π(d)f (d)

)
.

If i = 1, then we denote P(f ) = P(1)(f ).

for f = 1, let P = P(1) = (p(j , i)) the transpose of the
transition matrix.
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Computation of expectations

Lemma

Let f0, · · · , fk functions defined on S →Mn×n(R). For k > 0,
then

E[f0(∆t)f1(∆t−1) · · · fk(∆t−k)] = ~IP(f0) · · ·P(fk−1)Π(fk),

with ~I = (In, · · · , In) a n × ndmatrix with In the identity matrix of
size n.
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MS-AR(1) without constant

Xt = a(∆t)Xt−1 + σ(∆t)ηt .

Issues:

Existence of a strictly sationary solution.

Existene of a 2nd order statioanry solution.

We look for non-anticipative solutions, idest solutions as

Xt = f (ηt ,∆t , ηt−1,∆t−1, · · · ).
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Stationarity of the MS-ARMA(p,q) model

By iteration, for k ≥ 1, then

Xt = a(∆t) · · · a(∆t−k+1)Xt−k

+
k−1∑
i=0

a(∆t) · · · a(∆t−i+1)σ(∆t−i )ηt−i .

By convention, a(∆t) · · · a(∆t−i+1) = 1 if i = 0.

Solutions should be given by

X̃t =
k−1∑
i=0

a(∆t) · · · a(∆t−n+1)σ(∆t−n)ηt−n,

under the condition the series convergences almost surely.
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Cauchy root test

We use the n-th root Cauchy test to derive an absolute
convergence condition. To do so, let

un = a(∆t) · · · a(∆t−n+1)σ(∆t−n)ηt−n.

We have

|un|
1
n = exp{

1

n

n∑
k=1

log |a(∆t−k+1)|+
1

n
log(σ(∆t−n)|ηt−n|)}.

Since lim sup n−1 log(σ(∆t−n)|ηt−n|) = 0 a.s., we obtain by the
ergodic theorem

lim sup |un|
1
n = exp{E[log |a(∆t |]}.

This provides the condition

E[log |a(∆t)|] < 0.
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Uniqueness

Under the previous condition

X̃t =
∞∑
k=1

a(∆t) · · · a(∆t−n+1)σ(∆t−n)ηt−n, a.s.

is properly defined and is solution of the MS-AR(1) model.
Suppose there exists another strictly stationary solution (X ∗t ):

X ∗t = a(∆t) · · · a(∆t−k+1)X ∗t−k+
k−1∑
k=1

a(∆t) · · · a(∆t−i+1)σ(∆t−i )ηt−i .

Then

|Xt − X ∗t | ≤ |a(∆t) · · · a(∆t−k+1)||X ∗t−k |+Rt,k ,

such that Rt,k → 0 and |a(∆t) · · · a(∆t−k+1)| −→
k→∞

0 a.s..

Consequently
Xt = X ∗t a.s.
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Strict stationary condition

Proposition

There exists a unique striclty stationary solution if

E[log |a(∆t)|] =
d∑

i=1

log |a(i)|π(i) < 0.

This solution is nonanticipative.
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Second-order stationarity of the MS-AR(1) model

Existence in L2 of

X̃t =
∞∑
k=0

Rt,k , Rt,k = a(∆t) · · · a(∆t−n+1)σ(∆t−n)ηt−n.

Using the L2 norm, we have

‖X̃t‖ ≤
∞∑
k=0

‖Rt,k‖,

and
E[R2

t,k ] = E[a2(∆t) · · · a2(∆t−k)]

= (1, · · · , 1)Pn(a2)Π(σ2).
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Second-order stationarity of the MS-AR(1) model

Proposition

If

ρ(P(a2)) = ρ

p(1, 1)a2(1) · · · p(d , 1)a2(1)
...

...
p(1, d)a2(d) · · · p(d , d)a2(d)

 < 1,

(X̃t) is the unique second order stationary and non-anticipative
solution of the MS-AR(1) model.
Conversly, if ρ(P(a2)) ≥ 1, there is no second order stationary and
non-anticipative solution.

25/41



Hidden Markov Model
MS-ARMA(p,q) process

Estimation of MS-AR models

Stationarity of the MS-AR(1) model
Stationarity of the MS-ARMA(p,q) model

1 Hidden Markov Model

2 MS-ARMA(p,q) process
Stationarity of the MS-AR(1) model
Stationarity of the MS-ARMA(p,q) model

3 Estimation of MS-AR models

27/41



Hidden Markov Model
MS-ARMA(p,q) process

Estimation of MS-AR models

Stationarity of the MS-AR(1) model
Stationarity of the MS-ARMA(p,q) model

Vectorial representation

Vectorial dynamic: Zt = AtZt−1 + Bt , with Bt = Ct + Σtηt ,

Ct = (c(∆t), 0, · · · , 0, · · · , 0)′ ∈ Rp+q,

Zt = (Xt , · · · ,Xt−p+1, εt , · · · , εt−q+1)′ ∈ Rp+q,

Σt = (σ(∆t), · · · , 0, σ(∆t), · · · , 0).

At =

(
a(∆t) b(∆t)

0 J

)
∈M(R)(p+q)×(p+q).
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Vectorial dynamic: Zt = AtZt−1 + Bt .

a(∆t) =


a1(∆t) · · · ap(∆t)

1 0 · · · 0
0 1 · · · 0
...

. . .
. . .

...
0 · · · 1 0

 ,

b(∆t) =


b1(∆t) · · · bq(∆t)

0 0 · · · 0
0 0 · · · 0
...

. . .
. . .

...
0 · · · 1 0

 , J =


0 0 · · · 0
1 0 · · · 0
0 1 · · · 0
...

. . .
. . .

...
0 0 · · · 1 0
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Top Lyapunov exponent

The top Lyapunov exponent of the sequence (a(∆t)) is defined as

γ = inf
t>0

E[
1

t
log ‖a(∆t)a(∆t−1) · · · a(∆1)‖]

a.s.
= lim

t→∞

1

t
log ‖

t∏
i=1

a(∆t−i )‖,

for any norm on M(R)p×p.
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Strict stationarity condition

Proposition

Suppose γa < 0. Then, for any t ∈ Z, the sequence

Zt = Bt +
∞∑
k=1

At · · ·At−k+1Bt−k

converges almost surely and the process (Xt) defined as the first
component of (Zt) is the unique strictly stationary solution of the
MS-ARMA(p,q) model.

30/41



Hidden Markov Model
MS-ARMA(p,q) process

Estimation of MS-AR models
Likelihood computation

1 Hidden Markov Model

2 MS-ARMA(p,q) process

3 Estimation of MS-AR models
Likelihood computation

32/41



Hidden Markov Model
MS-ARMA(p,q) process

Estimation of MS-AR models
Likelihood computation

MS-AR(p) model

Xt =

p∑
i=1

ai (∆t)Xt−i + σ(∆t)ηt , Pηt = NR(0, 1).

Parameters of interest

θ = (p(1, 1), · · · , p(1, d − 1), · · · , p(d , d − 1),
a1(1), · · · , a1(d), · · · , σ(1), · · · , σ(d))′.

The likelihood can be written by conditioning with respect to all
possible paths

(e1, · · · , eT )

of the Markov chain, with ei ∈ S. The probability of this path is

P(e1, · · · , eT ) = P(∆1 = e1, · · · ,∆T = eT ) = π(e1)p(e1, e2) · · · p(eT−1, eT ).
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Likelihood

For any path, we have a likelihood

L
(e1,··· ,eT )
T (X1, · · · ,XT ) =

T∏
t=1

φet (Xt −
p∑

k=1

ak(et)Xt−k),

with φi (.) the density of NR(0, σ2(i)).
The likelihood of the observations is

LT (X1, · · · ,XT ; θ) =
∑

(e1,··· ,eT )∈ST
L
(e1,··· ,eT )
T (X1, · · · ,XT )P(e1, · · · , eT ).

This likelihood is not tractable in practice.

There are several methods to compute the likelihood:
algorithm based on a matrix product; the forward-backward
algorithm (Baum, 1972); Hamilton filter (1989).
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Hamilton filter

The method is based on the log-likelihood and provides filtered
probabilities of the regimes.

Neglecting the distribution of X1, we have

log LT (X1, · · · ,XT ; θ) =
T∑
t=1

log ft(Xt |Xt−1, · · · ,X1),

with

ft(Xt |Xt−1, · · · ,X1) =
d∑

j=1
ft(Xt |Xt−1, · · · ,X1,∆t = j)

P(∆t = j |Xt−1, · · · ,X1).
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Hamilton filter

Let
πt|t−1(j) = P(∆t = j |Xt−1, · · · ,X1),
πt|t(j) = P(∆t = j |Xt , · · · ,X1).

We have

πt+1|t(j) =
d∑

j=1

P(∆t+1 = j |∆t = i ,Xt−1, · · · ,X1)πt|t(i) =
d∑

j=1

p(i , j)πt|t(i),

πt|t(j) =
g(Xt , · · · ,X1|∆t = j)π(j)

g(Xt , · · · ,X1)
,

using the formula P(A|X = x) =
f (x |A)

f (x)
P(A).

Let

ηt(i) =
1

σi
(Xt −

p∑
k=1

ak(i)Xt−k)
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Hamilton filter

πt|t(j) =
g(Xt , · · · ,X1|∆t = j)π(j)

g(Xt , · · · ,X1)

=

φ(ηt(j))
σ(j) g(Xt−1, · · · ,X1|∆t = j)π(j)

g(Xt , · · · ,X1)

=

φ(ηt(j))
σ(j) P(∆t = j |Xt−1, · · · ,X1)g(Xt−1, · · · ,X1)

g(Xt |Xt−1, · · · ,X1)g(Xt−1, · · · ,X1)

=

φ(ηt(j))
σ(j) πt|t−1(j)

g(Xt |Xt−1, · · · ,X1)

=

φ(ηt(j))
σ(j) πt|t−1(j)

d∑
i=1

φ(ηt(i))
σ(i) πt|t−1(i)
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Hamilton filter

Finally, the sequences

πt|t−1(j) = P(∆t = j |Xt−1, · · · ,X1), πt|t(j) = P(∆t = j |Xt , · · · ,X1),

are obtained recursively by
πt|t(j) =

φ(ηt(j))
σ(j) πt|t−1(j)

d∑
i=1

φ(ηt(i))
σ(i) πt|t−1(i)

πt+1|t(j) =
d∑

i=1
p(i , j)πt|t(i).

with initial values π1|0(i) = π(i).
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Hamilton filter in matrix form

Let

πt|t =

πt|t(1)
...

πt|t(d)

 , πt+1|t =

πt+1|t(1)
...

πt+1|t(d)

 ,Φt =


φ(ηt(1))

σ(1)
...

φ(ηt(d))

σ(d)


Let � the Hadamard product. We have

πt|t =
πt|t−1 � Φt

ι′{πt|t−1 � Φt}
, πt+1|t = Pπt|t .
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Hamilton filter in matrix form

We finally obtain the conditional log-likelihood

LT (X1, · · · ,XT ; θ) =
T∑
t=1

log ft(Xt |Xt−1, · · · ,X1),

with
ft(Xt |Xt−1, · · · ,X1) = ι′{πt|t−1 � Φt}.
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Maximizing the likelihood

Maximizing the (log-)likelihood can be done by a classic
optimization procedure or the EM algorithm. The intuition is as
follows:

If in addition to the observations (X1, · · · ,XT ), one could observe
(∆1, · · · ,∆T ), we could easily estimate θ and the initial law π0 by
MLE.

The EM algorithm alternates as follows: the E-step evaluates the
likelihood given the current value of the parameters; the M-step
maximizes the objective function computed in the E-step.
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The EM algorithm

E-step Suppose we have an estimate (θ(k), π
(k)
0 ) of (θ0, π0). Then

it makes sense to approximate the unknown log-likelihood by its
expectation given the observations (X1, · · · ,XT ) computed under

the law (θ(k), π
(k)
0 ).

M-step We aim at maximizing in (θ, π0) the log-likelihood

LT (X1, · · · ,XT ; θ, π0|θ(k), π(k)0 ).
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