
On High Frequency Estimation of the Frictionless Price:

The Use of Observed Liquidity Variables

Selma Chaker∗

Observed high-frequency prices are always contaminated with liquidity costs or market

microstructure noise. Inspired by the market microstructure literature, I explicitly model

this noise and remove it from observed prices to obtain an estimate of the frictionless price.

I then formally test whether the prices adjusted for the estimated liquidity costs are either

totally or partially free from noise. If the liquidity costs are only partially removed, the

residual noise is smaller and closer to an exogenous white noise than the original noise is.

To illustrate my approach, I use the adjusted prices to improve volatility estimation in the

presence of noise. If the noise is totally absorbed, I show that the sum of squared returns –

which would be inconsistent for return variance when based on observed returns – becomes

consistent when based on adjusted returns. This novel estimator achieves the maximum

possible rate of convergence. If the noise is partially absorbed, however, I show that the

two time scales volatility estimator – which would be inconsistent for return variance when

based on observed returns – becomes consistent when based on adjusted returns even if the

original noise is endogenous, heteroskedastic and autocorrelated.
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1. INTRODUCTION

The frictionless price – also referred to as the true price, the efficient price or the

equilibrium price – is the expectation of the asset’s final value conditional on all pub-

licly available information. However, the frictionless price is latent as observed prices

are contaminated with market microstructure noise.

Why then is it important to estimate the frictionless price? From a high frequency

financial econometrics perspective, specifically nonparametric methods, the friction-

less price is either treated as observable or suffering from a measurement error. In

this literature, the object of interest varies from integrated volatility - pioneered by

Andersen et al. (2003) - to spot volatility, leverage effects, integrated betas and jumps.

The financial applications range from risk management to options hedging, execution

of transactions, portfolio optimization, and forecasting. Therefore, the frictions in

the observed price will impact the estimation of the object of interest as well as the

application. In this paper, I show that estimating the frictionless price before using it

to measure the integrated volatility not only improves the accuracy but also relaxes

the assumptions underlying the traditional robust-to-noise volatility estimators. In

the empirical illustration, I find that for more than half of the 2010 business days, I

can fully recover the frictionless price for Alcoa Aluminum.

From a market microstructure perspective, several papers provide estimators of

the liquidity or transaction costs which may induce a measure of the frictionless

price. However, the underlying assumptions for the frictionless price usually restrict

its volatility to be constant; key models are surveyed in Hasbrouck (2007). This paper

allows the volatility of the frictionless price to be time-varying as a result of adopting

the standard model in financial econometrics, the hidden semimartingale model. The

latter model assumes that the observed price is the sum of a semimartingale, which

usually has stochastic volatility, and a noise term.
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I introduce the liquidity costs in the context of a model that is consistent with both

the standard additive price model of high-frequency financial econometrics and sev-

eral transaction-cost models from the market microstructure literature. The standard

model is given by

pt = p∗t + εt, t ∈ [0, 1], (1)

where pt is the observed log price, p∗t is the log of the frictionless price and εt is a

measurement error term summarizing the market microstructure noise generated by

the trading process1. The fixed interval [0, 1] is a day, for example. In this context,

the observed price is the sum of two unobservable components, the frictionless price

and the noise.

Regarding the noise, within the market microstructure literature, Stoll (2000)

studies various sources of trading frictions. The presence of a bid-ask spread and

the corresponding bounces is one such source modeled by Roll (1984). Glosten and

Harris (1988) extend Roll’s model by adding a trading volume component to capture

size-varying costs of providing liquidity service. This model is nested in (1) and is

given by

pt = p∗t + β1qt + β2qtvt, (2)

where qt is the trade-direction indicator, which takes the value +1 if the trade is

buyer-initiated and -1 if the trade is seller-initiated, and vt is the trading volume. β1

and β2 are two parameters to be estimated.

If an estimator of the noise is denoted by ε̂t, then

p̂∗t = pt − ε̂t (3)

1In a similar framework, Aı̈t-Sahalia and Yu (2009) relate statistical measures of the noise ε to
financial measures of the stock liquidity.
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is an estimator of the frictionless price. For example, in the context of model (2), ε̂t

would be written as β̂1qt + β̂2qtvt where β̂1 and β̂2 are consistent estimators of β1 and

β2, respectively.

The rest of this paper is organized as follows. Section 2 describes the model for

market microstructure noise based on liquidity costs. In Section 3, I discuss the

estimation of this model and describe a test for the performance of the frictionless-

price measure. In Section 4, I study volatility estimation based on adjusting prices for

the liquidity measure introduced in Section 2. Section 5 is an empirical application

to assess with data the performance of the price model of Section 2. In Section 6, I

offer several conclusions.

2. PRICE MODEL AND SETUP

A generalized model of Glosten and Harris (1988) introduced in (2) is given by

pt = p∗t + F
′

tβ, (4)

where F is an M-vector of liquidity-cost variables and β is a parameter to be estimated

from the data. In addition to qt and qtvt, F could contain the bid-ask spread - a natural

measure of frictions - and the quoted depths2. Indeed, in Kavajecz (1999), the depths

are used to capture inventory-control costs as well as asymmetric-information costs.

The linear form F
′

tβ in (4) could be misspecified in the sense that it does not

capture the entire noise εt. The model of this paper accounts for this misspecification

in the following way:

pt = p∗t + F
′

tβ + ξt. (5)

The residual noise ξt captures all the trading frictions that are misspecified by the

F
′

tβ form. The magnitude of ξt could also be seen as a measure of the performance of

2The ask (bid) depth specifies the maximum quantity for which the ask (bid) price applies.
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the liquidity costs F
′

tβ. If ξt is small, then F
′

tβ is a good measure of liquidity costs.

To present the model in discrete time, I introduce the following notation. I consider

n + 1 equidistant price observations at i = 0, 1, .., n over [0,1]. To simplify notation

under the infill sampling design, an intraday variable Yi stands for Yi/n. Then, I

denote ri and r∗i the intraday observed and latent returns pi − pi−1 and p∗i − p∗i−1,

respectively. Finally, the first differences or variations of the regressors and the noises

are denoted by Xi = Fi − Fi−1, ∆εi = εi − εi−1 and ∆ξi = ξi − ξi−1, respectively.

Using the model (5), the high-frequency returns are written as

ri = r∗i +X
′

iβ +∆ξi, i = 1..n. (6)

Next, I turn to the assumptions underlying the frictionless price and liquidity

costs. I make the arbitrage-free semimartingale assumption for the frictionless price

as in the standard hidden semimartingale model. This one-dimensional price process,

which evolves in continuous time over the fixed interval [0,1], is defined on a complete

probability space (f, F , P). I consider an information filtration, the increasing family

of σ-fields (Ft)t∈[0,1] ⊆ F , which satisfies the usual conditions of P-completeness

and right continuity. The prices and noise explanatory variables are included in the

information set Ft.

Assumption 1

The frictionless price p∗ follows the dynamics

dp∗t = µtdt+ σtdWt, (7)

where Wt is a standard Brownian motion, σt is a càdlàg volatility function, indepen-

dent from the frictionless price (no leverage), and µt is the drift coefficient.

I make the following set of assumptions for the different components of the noise.
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Assumption 2

(i) Ft and p∗t are not independent.

(ii) The increments of Ft are OP (1) and E[Ft] = 0.

Essentially, Assumption 2 allows the first component of the noise to be endogenous

with the frictionless return, autocorrelated and heteroskedastic3. In fact, the return-

noise endogeneity is empirically evidenced (see, e.g., Hansen and Lunde 2006) and

theoretically modeled (see, e.g., Diebold and Strasser 2013).

Assumption 3

(i) ξt is independent from p∗t and Ft.

(ii) ξt is normally identically distributed and E[ξt] = 0.

In Assumption 3, the residual noise is an exogenous white noise. I explain in Section

3.3 how the normality assumption could be relaxed.

3. FRICTIONLESS-PRICE ESTIMATION

In this section, I estimate the liquidity costs which yield an estimate of the fric-

tionless price, as in (3). To check whether the proposed liquidity-cost model is mis-

specified, I derive a formal econometric test to distinguish between models (4) and

(5).

The idea of the estimation is to write the price-impact regression in (6) such that

all latent variables, including the frictionless return, are in the regression’s residual:

ri = X
′

iβ + (r∗i +∆ξi), i = 1, ..., n. (8)

In matrix notation, the regression (8) is written as r = Xβ + r∗ + ∆ξ where r =

(r1, .., rn)
′
, X = (X(1)′ , ..,X(M)′), X(m) = (X

(m)
1 , .., X

(m)
n ) for m = 1..M , and ∆ξ =

3For example, the trading volume is highly persistent because of the clustering of small-size trades,
heteroskedastic as a result of its U-shaped intraday pattern, and endogenous with the frictionless
price as modeled in Glosten and Harris (1988).
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(∆ξ1, ..,∆ξn)
′
. Using a similar notation, I also write the price model in matrix form:

p = p∗ + ε = p∗ + Fβ + ξ.

3.1. Asymptotic theory

In this subsection, I show the consistency and the asymptotic normality of the

estimator of β. Let β̂ be the ordinary least squares (OLS) estimator of β, defined by

β̂ = (X
′
X)−1X

′
r. (9)

I make the following assumptions.

Assumption A X
′
X

n

P−→ Ω, a matrix of rank M.

Assumption B X
′
V ar[r∗|X]X

P−→ Ω∗, a positive definite matrix.

Assumption C X
′
V ar[∆ξ]X

n

P−→ S, a positive definite matrix.

Assumption A concerns the regressors in (8), whereas Assumptions B and C are re-

lated to the residual of the price-impact regression.

I next derive the asymptotic theory for the estimator of the liquidity-cost param-

eters. All proofs are given in the Appendix. Convergence in probability is denoted by

P−→, whereas convergence in law is denoted by
L−→.

Theorem 1 Suppose Assumptions 1 and 2 hold.

(i) If V ar[ξt] = 0:

Under Assumptions A and B, n(β̂ − β)
L−→ N (0,Ω−1Ω∗Ω−1).

(ii) If V ar[ξt] ̸= 0:

Under Assumptions 3, A and C,
√
n(β̂ − β)

L−→ N (0,Ω−1SΩ−1) .

In Theorem 1 (i), consistency is obtained with a faster rate of convergence than the

usual
√
n. In that case, the residual is the frictionless return, which is very small

at high frequencies. On the other hand, the noise Xβ is relatively big. Therefore,

7



the regression performs well and β̂ is supra-convergent. In Stock (1987), the supra-

convergence rate is obtained in a similar setting.

For the case where V ar[ξt] ̸= 0 in Theorem 1 (ii), I obtain the usual
√
n rate of

convergence because the regression residual r∗ +∆ξ is OP (1). The frictionless-return

moments do not appear in the asymptotic variance of β̂. Indeed, the stochastic

magnitude of the frictionless return is negligible compared to ∆ξ.

Once β is consistently estimated, ε̂ = F
′
β̂ is the liquidity-costs measure proposed

in this paper. By subtracting the liquidity-costs measure from the observed prices, I

decontaminate the latter from noise and obtain a proxy for the frictionless price. Let

the adjusted price p̂∗ and the adjusted return r̂∗ be defined, respectively, as

p̂∗i = pi − F
′

iβ̂,

r̂∗i = ri −X
′

iβ̂.

(10)

3.2. Testing misspecification

In this subsection, I formally test whether the adjusted returns still have a noise

component. The null hypothesis H0 and the alternative hypothesis H1 are, respec-

tively,

H0 : V ar[ξt] = 0,

H1 : V ar[ξt] ̸= 0.

(11)

The idea of the test is that the presence of noise usually causes negative serial

correlation in high-frequency returns. The next proposition formally presents this

idea.

Proposition 1 Suppose Assumptions 1 and 2 hold.

(i) If V ar[ξt] = 0:
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Under Assumptions A and B, Cov[r̂∗i , r̂
∗
i−1]

P−→ 0, i = 1..n.

(ii) If V ar[ξt] ̸= 0:

Under Assumptions 3, A and C, Cov[r̂∗i , r̂
∗
i−1]

P−→ −V ar[ξt] < 0, i = 1..n.

According to Proposition 1, if V ar[ξt] = 0, the covariance between successive adjusted

returns is asymptotically zero. By contrast, if V ar[ξt] ̸= 0, the covariance between

successive adjusted returns is asymptotically negative.

I denote by RC(p̂∗) =
∑n

i=1 r̂
∗
i r̂

∗
i−1 the realized autocovariance of order one for the

adjusted returns. The test statistic Sn is defined as Sn =
√
nRC(p̂∗)√
n
3

∑n
i=1 r̂

∗4
i

. In the next

theorem, I provide the asymptotic distribution of Sn.

Theorem 2

(i) Suppose Assumptions 1, 2, A and B hold.

Under H0, Sn
L−→ N (0, 1).

(ii) Suppose Assumptions 1-3, A and C hold.

Under H1, Sn
P−→ ∞.

According to Theorem 2, I reject H0 at the confidence level α when |Sn| > c1−α
2
,

where c1−α
2
denotes the 1− α

2
-quantile of the N (0, 1) distribution.

From a market microstructure perspective, the misspecification test may be inter-

preted as a test for the quality of the trading-costs measure F
′
β̂. If this is a good

measure of the noise ε, then the residual noise ξ should go to zero. Otherwise, the

trading-costs measure does not capture all the frictions and the term ξ does not vanish.

3.3. Relaxing the normality assumption for ξ

The normality assumption for the residual noise ξ is critical to deriving the asymp-

totic distribution in Theorem 1 (ii). Indeed, in the context of the infill asymptotic

framework of this paper, Lahiri (1996, section 2.1) shows that for any regression with

autocorrelated residuals as in (8), the OLS estimator β̂ cannot be consistent for β
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and the asymptotic distribution of β̂ is not necessarily Gaussian. While Lahiri does

not assume normality for the regression residual, this paper does so in order to derive

asymptotic normality under infill asymptotics. For a comparison of infill asymptotics

to the more standard increasing-domain asymtotics, see Zhang and L. (2005) where

the authors study covariance parameters estimation in Gaussian spatial models.

A natural way to relax the normality assumption for ξ is to apply Generalized Least

Squares (GLS) instead of OLS, since the regression residual in (8) is an MA(1) process

in the limit with a known covariance matrix, a function only of V ar[ξt]. Thus trans-

forming the regression residual from MA(1) to i.i.d., using infill asymptotics does not

cause inconsistency and non-normality of the estimator of β. However, the regression

cannot be transformed before testing whether V ar[ξt] = 0 using the misspecification

test in Section 3.2. Once H0 is rejected, GLS could be applied instead of OLS to

estimate β consistently, more efficiently and without imposing normality for ξ.

3.4. Endogeneity analysis

The consistency results for β̂ in Theorem 1 would not be achievable in a standard

setting because of endogenous regression residual; instrumental variables would be

needed to achieve consistency. However, in the setting of this paper, the endogeneity

of the residual does not cause inconsistency because its source - r∗ - is asymptotically

negligible. In finite sample, to consistently estimate β, it might be important to use

instruments. The lag of the regressor X would be a valid instrument.

In Proposition 2, I derive some properties for the return-noise covariance and I show

that Cov[ri,X
′

iβ̂] > Cov[r̂∗i ,X
′

iβ̂] asymptotically.

Proposition 2 Suppose Assumptions 1 and 2 hold. For i=1..n,

(i) If V ar[ξt] = 0:

Under Assumptions A and B,

Cov[ri,X
′

iβ̂] = V ar[X
′

iβ] + Cov[r∗i ,∆εi] +OP (1/n),
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Cov[r̂∗i ,X
′

iβ̂] = Cov[r∗i ,∆εi] +OP (1/n).

(ii) If V ar[ξt] ̸= 0:

Under Assumptions 3, A and C,

Cov[ri,X
′

iβ̂] = V ar[X
′

iβ] + Cov[r∗i ,∆εi] +OP (1/
√
n),

Cov[r̂∗i ,X
′

iβ̂] = Cov[r∗i ,∆εi] +OP (1/
√
n).

To give an economic intuition for the return-noise endogeneity, I argue that it is due

to informational frictions. For instance, in the asymmetric-information models of

Glosten and Harris (1988) and Hasbrouck (1991), the trading volume captures the

adverse selection in the efficient (or the frictionless) price. Therefore, having the

volume as part of both the frictionless price and the liquidity costs results in the

endogeneity between these two components. Moreover, in Glosten and Harris (1988),

the trade-direction indicator is present in the efficient price as well as the liquidity costs

(see Huang and Stoll 1997). So, this trade indicator is also a source of endogeneity of

the noise.

4. APPLICATION TO VOLATILITY ESTIMATION

The object of interest in this section is the integrated variance, defined as

IV =

∫ 1

0

σ2
udu. (12)

I denote the realized variance by RV (.) of a given process. If the frictionless return

were observed, then the realized variance RV (p∗) =
∑n

i=1 r
∗2
i would be a consistent

estimator of IV, as first shown in Meyer (1967). However, the realized variance based

on observed prices, RV (p) =
∑n

i=1 r
2
i , is inconsistent for IV because of the market

microstructure noise.

The first consistent IV estimator which is robust to noise is the two time scales estima-

tor of Zhang et al. (2005). This estimator relies on standard noise assumptions rather
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than endogenous, autocorrelated and heteroskedastic noise, as in this paper. In the

same line of nonparametric volatility estimators, Barndorff-Nielsen et al. (2008a) and

Jacod et al. (2009) derive the kernel and the pre-averaging estimators, respectively.

All the mentioned three estimators are inconsistent for IV if applied to the price model

(5) because of the endogeneity in the noise4. However, the noise heteroskedasticy is

allowed only for the pre-averaging estimator. As for the autocorrelation in the noise,

it could be accommodated for in the two time scales estimator and the pre-averaging

estimator; see the extensions in Aı̈t-Sahalia et al. (2011) and Hautsch and Podolskij

(2013), respectively.

In this section, I propose a novel volatility estimator - based on adjusted prices de-

fined in (10) - which relaxes the underlying noise assumptions of the aforementioned

nonparametric volatility estimators. Improved volatility estimation is due to the fact

that the adjusted price p̂∗ is closer to the frictionless price p∗. And more importantly,

p̂∗ fits the assumptions justifying the use of model-free volatility estimators better

than p .

In Theorem 3, I show that if the liquidity costs are fully removed or H0 is not rejected,

the realized variance based on adjusted returns, RV (p̂∗) =
∑n

i=1 r̂
∗2
i , is consistent for

IV. For the case where the liquidity costs are only partially absorbed or H0 is rejected,

a robust-to-noise volatility estimator is needed. I show that, based on adjusted rather

than observed prices, the two time scale estimator - denoted by RV tts(p̂∗) - becomes

consistent for IV.

RV tts(p̂∗) is defined in the Appendix, in the proof of Theorem 3. For mixed normal-

limit distributions, I denote the stable convergence5 as
st−→.

Theorem 3 Suppose Assumptions 1 and 2 hold.

(i) Suppose V ar[ξt] = 0:

Under Assumptions A and B,
√
n(RV (p̂∗)− IV )

st−→ N (0, 2 IQ),

4See Li and Mykland (2007) for a sensitivity analysis of a specific endogeneity form.
5The stable convergence concept is discussed in Aldous and Eagleson (1978).

12



where IQ =
∫ 1

0
σ4
udu.

(ii) Suppose V ar[ξt] ̸= 0:

Under Assumptions 3, A, C and if the increments of Ft have bounded fourth moments,

n1/6 (RV tts(p̂∗)− IV )
st−→ N (0,Γξ),

where Γξ =
8
c2
E[ξ2]2 + c4

3
IQ, c =

(
1

12E[ξ2]2
IQ
)−1/3

.

According to Theorem 3, the estimation error in β̂ impacts neither the consistency

nor the asymptotic distribution of the estimator based on the adjusted returns. In

case (i), the result is similar to that where p∗ is observed. And for case (ii), the result

is similar to that where p∗ + ξ is observed.

The new volatility estimator RV (p̂∗) of Theorem 3 (i) has no tuning parameters as

would be the case if a robust-to-noise volatility estimator had to be used. The result

is obtained because the adjusted return could be written as r̂∗ = r∗ + oP (1/n), where

the oP (1/n) term is a consequence of the rate of convergence of β̂ in Theorem 1 (i).

Finally, the rate of convergence of RV (p̂∗) is
√
n, which is not achievable using any

robust-to-noise volatility estimator. Indeed, Gloter and Jacod (2001) show that the

rate of convergence of any robust-to-noise integrated volatility estimator is bounded

by n−1/4, where n is the sample size.

In Theorem 3 (ii), the new volatility estimator RV tts(p̂∗) has a limit distribution as

if the noise were ξ - exogenous, independent and identically distributed - instead of

ε - endogenous6, autocorrelated and heteroskedastic. The idea of the two time scales

estimator is to combine a slow-scale sampling return frequency (to mitigate the noise

effect) with a high-scale one (to correct the noise-induced bias). The same idea still

holds if the adjusted returns are used. First, for the slow-scale sampling return, low-

frequency adjusted returns contain an oP (1/
√
n) term resulting from the estimation

of β̂ in Theorem 1 (ii). This term is negligible compared to low-frequency frictionless

returns, which are oP (1/
√
n), where n is the slow frequency verifying n < n. Second,

6Within the statistical approach of the nonparametric estimation of volatility, Kalnina and Linton
(2008) propose an alternative specification of the return-noise endogeneity.
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for the high-scale frequency, high-frequency adjusted returns also contain an oP (1/
√
n)

term resulting from β̂ estimation in Theorem 1 (ii). This term is negligible compared

to the residual noise component ∆ξ, which is OP (1). Therefore, the bias correction is

not impacted.

To summarize, the new semiparametric volatility estimator is given by

IV new(p) = RV (p̂∗) if V ar[ξt] = 0,

= RV tts(p̂∗) if V ar[ξt] ̸= 0.

(13)

Confidence intervals for IV new(p) are computed using Theorem 3. And, as in Gonçalves

and Meddahi (2009), more accurate confidence intervals could be obtained using the

bootstrap method.

5. EMPIRICAL ILLUSTRATION

In this section, I assess with data the performance of the model presented in

Section 2. I use Alcoa Aluminum stock, listed on the NYSE, and the data cover the

2010 period. To clean this data, I apply the same procedure as in Barndorff-Nielsen

et al. (2008b). I use five explanatory variables to capture the liquidity costs: the

inferred trade-direction indicator7, trading volume, bid-ask spread, bid depth and ask

depth.

For the misspecification test of Theorem 2, I find that for 139 business days out of

252, the test is not rejected, implying that the liquidity-cost measure absorbs all the

noise in more than half of the sample. Figure 1 shows the first-order realized autoco-

variance of the observed returns and adjusted returns. Consistently with Proposition

1, the stylized fact of the negativity of the first-order autocovariance of the high-

7I infer the binary series qt from observed trade and quote prices using the Lee and Ready (1991)
trade classification algorithm. Trade classification requires that the trade series be matched with the
quote series because in the Trade and Quote (TAQ) database the two series are offered separately. I
match trades and quotes by assuming a zero time lag.
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frequency returns disappears, or at least becomes much less pronounced, by adjusting

the returns for liquidity costs.
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Figure 1: The daily first-order realized autocovariance for Alcoa, 2010. The auto-

covariance involving the following returns: original, β̂-adjusted, β̂inst-adjusted, are

plotted in the dashed lines, solid thin line, solid thick line, respectively.

Figure 1 also shows the first-order realized autocovariance of the adjusted returns

using the lag of X as instrumental variable to estimate β. Indeed, as mentioned in

Section 3.4, using instrumental variables might be important in finite sample. The

adjusted return expression becomes r̂∗i = ri − X
′

iβ̂inst where β̂inst = (Z
′
X)−1Z

′
r

and Z denotes the lag of X. Z is a valid instrument since Z
′
X is nonsingular - as

the liquidity-cost variables are persistent - and it is uncorrelated with the regression

residual at high frequencies - as a consequence of the p∗ semimartingale property.

For Alcoa 2010, the first-order realized autocovariance using adjusted returns with

instrumental variables is mostly negative and close to zero. This is an evidence that

any residual noise would be an exogenous white noise. However, OLS-based RC(p̂∗)

could be positive in contradiction with a residual noise that is an exogenous white

noise.
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Figure 2: The daily realized correlation of the estimated noise and the returns for Alcoa, 2010.

The correlation involving the original (adjusted) return is plotted in the dashed lines (solid line).

The horizontal lines are the −1/
√
2 and 0 bounds of Diebold and Strasser (2013).

Finally, Figure 2 plots the correlation of the returns and the fitted noise X
′
β̂inst,

using observed returns and β̂inst-based adjusted returns. I also plot the return-noise

correlation bounds derived by proposition 4 of Diebold and Strasser (2013). The

authors find that the return-noise correlation is between −1/
√
2 and 0 for a one-

period model of market making. In Figure 2, the return-noise correlation computed

using observed returns is positive, whereas the return-noise correlation based on ad-

justed returns is mostly in the interval [−1/
√
2, 0], consistent with the theoretical

result of Diebold and Strasser (2013). I also find that, for all 2010’s business days,∑n
i=1 riX

′

iβ̂ >
∑n

i=1 r̂
∗
iX

′

iβ̂ as stated in Proposition 2.

6. CONCLUSION

In light of the market microstructure literature that provides economic drivers for

trading frictions or noise, I propose a semiparametric price model. Thus, by exploiting

a much bigger set of available trade and quote data, I estimate the frictionless price.

I derive a new volatility measure using the estimated frictionless price. Compared to
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traditional robust-to-noise volatility estimators, this new volatility estimator does not

rely on the absence of endogeneity for the noise, and allows by construction for het-

eroskedastic and autocorrelated noise. Moreover, if the noise is completely removed

by the liquidity-cost variables considered, then the new volatility estimator is as ac-

curate as if the frictionless price were observed.

There are many possible extensions to this work. Potentially, a nonlinear or index

model of liquidity costs would capture more noise than a linear one. Indeed, nonlinear-

ities are well documented in market microstructure theory. Another extension would

be to add jumps to the frictionless-price dynamics. There is evidence of jumps in the

data, so accounting for discontinuities should be explored. In this paper, I focus on

integrated volatility estimation, but the approach could improve the measurement of

intraday quantities such as spot volatility, powers of volatility, the leverage effect and

integrated betas in a multivariate setting. These extensions would broaden the appli-

cability of my approach to portfolio allocation, risk management and asset evaluation.

APPENDIX: PROOFS OF RESULTS

Proof of Theorem 1

By substituting the return expression into the definition of β̂ given in (9), I obtain

β̂ − β = (X
′
X)−1X

′
r− β

= (X
′
X)−1X

′
(r∗ +Xβ +∆ξ)− β

= (X
′
X)−1X

′
r∗ + (X

′
X)−1X

′
∆ξ

=

(
X

′
X

n

)−1
X

′
r∗

n
+

(
X

′
X

n

)−1
X

′
∆ξ

n
.

(A.1)
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• Consistency:

(i) If V ar[ξt] = 0, then equation (A.1) becomes

β̂ − β =

(
X

′
X

n

)−1
X

′
r∗

n
+ oP (1). (A.2)

The non negligible term of (A.2) is the product of X
′
X

n - which has a finite limit, Ω,

according to Assumption A - and the vector X
′
r∗, given by

X
′
r∗ =

n∑
i=1

Xir
∗
i =


∑n

i=1X
(1)
i r∗i

...∑n
i=1X

(M)
i r∗i

 . (A.3)

I apply the Cauchy-Schwartz inequality for each element of the vector X
′
r∗, for

m=1..M, (∑n
i=1X

(m)
i r∗i

n

)2

≤ 1

n

(∑n
i=1X

(m)2
i

n

)(
n∑

i=1

r∗2i

)
. (A.4)

Using Assumption A,
∑n

i=1 X
(m)2
i

N → Ω(m,m), where Ω(m,m) is the mth diagonal

element of the matrix Ω. On the other hand, the realized variance
∑n

i=1 r
∗2
i

P−→ IV .

Therefore X
′
r∗

n
P−→ 0, which implies along with (A.2) and Assumption A that β̂

P−→ β.

(ii) If V ar[ξt] ̸= 0, I show that both terms in (A.1) converge to zero. For the first

term, I use the consistency result (i) demonstrated above;
(
X

′
X

n

)−1
X

′
r∗

n = op(1).

For the second term -
(
X

′
X

n

)−1
X

′
∆ξ
n - I need to show that X

′
∆ξ
N

P−→ 0 to obtain

the consistency result since X
′
X

n
P−→ Ω according to Assumption A. By applying the

Law of Large numbers to each element
∑n

i=1 X
m
i ∆ξi

n of the sample mean, I obtain the

outcome X
′
∆ξ
n

P−→ E[Xt∆ξt]. The limit is zero since E[Xt∆ξt] = E[Xt]E[∆ξt] = 0

using Assumption 3 (i) and (ii).

• Asymptotic normality:

In both cases (i) and (ii), the regression residual has a normal distribution because
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of the normality of r∗ in Assumption 1 and the normality of ξ in Assumption 3 (ii).

Therefore,

β̂ ∼ N (E[β̂], V ar[β̂]). (A.5)

Now, I turn to the derivation of the asymptotic variance for each case.

(i) If V ar[ξt] = 0, (A.1) yields

V ar[n(β̂ − β)] = V ar[n(X
′
X)−1X

′
r∗]

= (
X

′
X

n
)−1V ar[X

′
r∗]((

X
′
X

n
)−1)′

= (
X

′
X

n
)−1︸ ︷︷ ︸

(
X

′
V ar[r∗|X]X

)
︸ ︷︷ ︸ (X

′
X

n
)−1︸ ︷︷ ︸

P−→ Ω−1Ω∗Ω−1,

(A.6)

which follows from Assumptions A and B.

(ii) If V ar[ξt] ̸= 0, (A.1) gives

V ar[
√
n(β̂ − β)] = V ar[

1√
n
n(X

′
X)−1X

′
r∗ +

√
n(X

′
X)−1X

′
∆ξ]

=
1

n
V ar[n(X

′
X)−1X

′
r∗] + V ar[

√
n(X

′
X)−1X

′
∆ξ],

(A.7)

using Assumption 3 (i). The first term in (A.7) vanishes as a result of (A.6). For the

second term,

V ar[
√
n(X

′
X)−1X

′
∆ξ] = (

X
′
X

n
)−1V ar[X

′
∆ξ]

n
((
X

′
X

n
)−1)′

= (
X

′
X

n
)−1︸ ︷︷ ︸ X

′
V ar[∆ξ]X

n︸ ︷︷ ︸ (X
′
X

n
)−1︸ ︷︷ ︸

P−→ Ω−1SΩ−1,

(A.8)

following from Assumptions A and C.
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Proof of Proposition 1

(i) If V ar[ξt] = 0,

Cov[r̂∗i , r̂
∗
i−1] = Cov[r∗i +X

′
i(β − β̂), r∗i−1 +X

′
i−1(β − β̂)]

= Cov[r∗i , r̂
∗
i−1]︸ ︷︷ ︸

=0

+Cov[X
′
i(β − β̂), r∗i−1] + Cov[X

′
i(β − β̂),X

′
i−1(β − β̂)]

= Cov[X
′
i, r

∗
i−1] (β − β̂)︸ ︷︷ ︸

oP (1/n)

+(β − β̂)
′︸ ︷︷ ︸

oP (1/n)

Cov[Xi,X
′
i−1] (β − β̂)︸ ︷︷ ︸

oP (1/n)

P−→ 0,

(A.9)

as a result of the properties of the semimartingale in Assumption 1 and Theorem 1 (i).

(ii) If V ar[ξt] ̸= 0,

Cov[r̂∗i , r̂
∗
i−1] = Cov[r∗i +X

′
i(β − β̂) + ∆ξi, r

∗
i−1 +X

′
i−1(β − β̂) + ∆ξi−1]

= Cov[r∗i , r̂
∗
i−1]︸ ︷︷ ︸

=0

+Cov[X
′
i, r

∗
i−1] (β − β̂)︸ ︷︷ ︸

oP (1/
√
n)

+(β − β̂)
′︸ ︷︷ ︸

oP (1/
√
n)

Cov[Xi,X
′
i−1] (β − β̂)︸ ︷︷ ︸

oP (1/
√
n)

+ Cov[X
′
i(β − β̂),∆ξi−1]︸ ︷︷ ︸

=0

+Cov[∆ξi, r
∗
i−1 +X

′
i−1(β − β̂)]︸ ︷︷ ︸

=0

+Cov[∆ξi,∆ξi−1]︸ ︷︷ ︸
=−V ar[ξt]

P−→ −V ar[ξt] < 0,

(A.10)

using the properties of the semimartingale in Assumption 1 along with Assumption 3 (i)

and Theorem 1 (ii).

Proof of Theorem 2

Recall,

r̂∗i = ri −X
′
iβ̂

= r∗i +X
′
i(β − β̂) + ∆ξi.

(A.11)

(i) Under H0, (A.11) and Theorem 1 (i) yield that r̂∗i = r∗i + oP (1/n). Applying Example 5
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from page 1062 of Kinnebrock and Podolskij (2008) for the r̂∗, I obtain

√
n

n∑
i=1

r̂∗i r̂
∗
i−1

st−→ MN (0, IQ), (A.12)

where IQ =
∫ 1
0 σ4

udu. A consistent estimator of IQ under H0 is given by n
3

∑n
i=1 r̂

∗4
i .

(ii) Under H1, (A.11) and Theorem 1 (ii) imply that r̂∗i = ∆ξi + oP (1/
√
n). Then, I apply

Theorem 1 of Barndorff-Nielsen et al. (2008a) to obtain

1√
n

n∑
i=1

r̂∗i r̂
∗
i−1

L−→ N (0, 5E[ξ2t ]
2 + V ar[ξ2t ]). (A.13)

Therefore
√
nRC(p̂∗) → ∞ and the result follows.

Proof of Proposition 2

(i) If V ar[ξt] = 0,

Cov[ri,X
′
iβ̂] = Cov[r∗i +X

′
iβ,X

′
iβ̂]

= Cov[r∗i +X
′
iβ,X

′
i (β̂ − β)︸ ︷︷ ︸
=oP (1/n)

+X
′
iβ]

= V ar[X
′
iβ] + Cov[r∗i ,∆εi] + oP (1/n),

(A.14)

using Assumptions 1 and 2 and Theorem 1 (i).

Cov[r̂∗i ,X
′
iβ̂] = Cov[r∗i +X

′
i (β − β̂)︸ ︷︷ ︸
=oP (1/n)

,X
′
iβ +X

′
i (β̂ − β)︸ ︷︷ ︸
=oP (1/n)

]

= Cov[r∗i ,∆εi] + oP (1/n),

(A.15)

using Assumptions 1 and 2, and Theorem 1 (i).
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(ii) If V ar[ξt] ̸= 0,

Cov[ri,X
′
iβ̂] = Cov[r∗i +X

′
iβ +∆ξi,X

′
iβ̂]

= Cov[r∗i +X
′
iβ +∆ξi,X

′
i (β̂ − β)︸ ︷︷ ︸
=oP (1/

√
n)

+X
′
iβ]

= V ar[X
′
iβ] + Cov[r∗i ,∆εi] + oP (1/

√
n),

(A.16)

using Assumptions 1, 2 and 3, and Theorem 1 (ii).

Cov[r̂∗i ,X
′
iβ̂] = Cov[r∗i +X

′
i (β − β̂)︸ ︷︷ ︸
=oP (1/

√
n)

+∆ξi,X
′
iβ +X

′
i (β̂ − β)︸ ︷︷ ︸
=oP (1/

√
n)

]

= Cov[r∗i ,∆εi] + oP (1/
√
n),

(A.17)

using Assumptions 1, 2 and 3, and Theorem 1 (ii).

Proof of Theorem 3

(i) Assume that V ar[ξt] = 0.

√
n(RV (p̂∗)− IV )

=
√
n (RV (p∗)− IV )︸ ︷︷ ︸+√

n
n∑

i=1

(X
′
i(β − β̂))2︸ ︷︷ ︸+2

√
n

n∑
i=1

r∗iX
′
i(β − β̂)︸ ︷︷ ︸ .

(A.18)

The first term of (A.18) is the usual term:
√
n(RV (p̂∗)− IV )

st−→ MN (0, 2 IQ) as shown in

Barndorff-Nielsen and Shephard (2002). In the following, I show that the second and third

terms are negligible.

For the second term of (A.18),

√
n

n∑
i=1

(X
′
i(β − β̂))2 =

√
n

n∑
i=1

(β − β̂)
′
XiX

′
i(β − β̂)

= n
√
n (β − β̂)

′︸ ︷︷ ︸
oP (1/n)

(

∑n
i=1XiX

′
i

n
)︸ ︷︷ ︸

OP (1)

(β − β̂)︸ ︷︷ ︸
oP (1/n)

= oP (1),

(A.19)
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using Assumption A and Theorem 1 (i).

For the last term of (A.18),

2
√
n

n∑
i=1

r∗iX
′
i(β − β̂) = 2

1√
n

n∑
i=1

r∗iX
′
i︸ ︷︷ ︸

OP (1)

N(β − β̂)︸ ︷︷ ︸
oP (1)

= oP (1), (A.20)

using the Cauchy-Schwartz inequality as in (A.4) and Theorem 1 (i).

(ii) In this proof, I use the original notation for indices Yi/n instead of the simplified notation

Yi for a given process Y.

The two time scales estimator of Zhang et al. (2005) applied to the adjusted price p̂∗ is given

by

RV tts(p̂∗) = RV avg(p̂∗)− n

n
RV (p̂∗), (A.21)

where

RV avg(p̂∗) =
1

K

K∑
k=1

RV (k)(p̂∗), (A.22)

and

RV (k)(p̂∗) =

nk∑
i=1

(p̂∗
k−1+K i

n

− p̂∗
k−1+K i−1

n

)2, nk = Floor

(
n− k + 2

K

)
, (A.23)

n =
1

K

K∑
k=1

nk. (A.24)

The bias RV tts(p̂∗)− IV could be decomposed as

RV tts(p̂∗)− IV = (RV tts(p̂∗)−RV avg(p∗))︸ ︷︷ ︸
error due to the noise

+ (RV avg(p∗)− IV )︸ ︷︷ ︸
error due to discretization

(A.25)

My objective is to show

1. for the bias due to noise:

√
K

n

(
RV tts(p̂∗)−RV avg(p∗)

) L−→ N (0, 8(E[ξ2])2), (A.26)
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2. and for the bias due to discretization:

√
n

K
(RV avg(p∗)− IV )

st−→ MN (0,
4

3
IQ). (A.27)

Combining the two sources of errors (A.26) and (A.27) so that each will be present at the

limit leads to K
n proportional to n

K , as in Zhang et al. (2005). Taking

K = cn2/3,

n = c−1n1/3,

(A.28)

implies that neither source of error will dominate at the limit. The constant c is a tuning

parameter which could be optimally determined. Let Γξ = 8
c2
E[ξ2]2 + c43IQ, the limiting

distribution is given by n1/6
(
RV tts(p̂∗)− IV

) st−→ N (0,Γξ). For the optimal choice of c,

minimizing the asymptotic variance Γξ leads to c =
(

1
12E[ξ2]2

IQ
)−1/3

.

Let’s start by showing (A.26). The error due to the noise of (A.25) is written as

√
K

n
(RV tts(p̂∗)−RV avg(p∗)) =

√
K

n
(RV avg(p̂∗)− n

n
RV (p̂∗)−RV avg(p∗))

=

√
K

n
(RV avg(p̂∗)−RV avg(p∗)− 2nE[ξ2t ] + 2nE[ξ2t ]−

n

n
RV (p̂∗))

=

√
K

n
(RV avg(p̂∗)−RV avg(p∗)− 2nE[ξ2t ])︸ ︷︷ ︸− 2

√
Kn

(
RV (p̂∗)

2n
− E[ξ2t ]

)
︸ ︷︷ ︸ .

(A.29)

The following Lemma is needed, which is in the same spirit as Lemma A.2 in Zhang et al.

(2005).

Lemma 1 Under assumptions 1, 2 and 3,

(i) RV (p̂∗) = RV (ξ) +Op(1),

(ii) RV avg(p̂∗)−RV avg(p∗) = RV avg(ξ) +Op

(
1√
K

)
.
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Proof of Lemma 1:

(i) The realized variance of the adjusted price is given by

RV (p̂∗) =

n∑
i=1

r̂∗2i

=

n∑
i=1

(
r∗i +X

′
i(β − β̂) + ∆ξi

)2
=

n∑
i=1

r∗2i +

n∑
i=1

(
X

′
i(β − β̂)

)2
+

n∑
i=1

(∆ξi)
2

+ 2
n∑

i=1

r∗i∆ξi + 2
n∑

i=1

r∗iX
′
i(β − β̂) + 2

n∑
i=1

X
′
i(β − β̂)∆ξi.

(A.30)

Since
∑n

i=1 r
∗2
i = OP (1),

∑n
i=1(∆ξi)

2 = RV (ξ) and 2
∑n

i=1 r
∗
i∆ξi = oP (1) using Assumption

3 then, (A.30) becomes

RV (p̂∗) = RV (ξ) +OP (1)

+
n∑

i=1

(
X

′
i(β − β̂)

)2
+ 2

n∑
i=1

r∗iX
′
i(β − β̂) + 2

n∑
i=1

X
′
i(β − β̂)∆ξi.

(A.31)

In the following, I show that each of the last three terms of (A.31) is oP (1) which implies

the order OP (1). First:

n∑
i=1

(
X

′
i(β − β̂)

)2
= trace

(
n∑

i=1

(β − β̂)
′
XiX

′
i(β − β̂)

)

= trace
(
(β − β̂)

′
X

′
X(β − β̂)

)

= trace

√
n(β − β̂)

′︸ ︷︷ ︸
oP (1)

(
X

′
X

n

)
︸ ︷︷ ︸

OP (1)

√
n(β − β̂)︸ ︷︷ ︸
oP (1)


= oP (1),

(A.32)

using Assumption A and Theorem 1 (ii).
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Second:
n∑

i=1

r∗iX
′
i(β − β̂) =

(
1√
n

n∑
i=1

r∗iX
′
i

)
︸ ︷︷ ︸

OP (1)

√
n(β − β̂)︸ ︷︷ ︸
oP (1)

= oP (1), (A.33)

using (A.20) and Theorem 1 (ii).

Third:
n∑

i=1

X
′
i(β − β̂)∆ξi =

(
n∑

i=1

X
′
i∆ξi

)
︸ ︷︷ ︸

OP (
√
n)

(β − β̂)︸ ︷︷ ︸
oP (1/

√
n)

= oP (1). (A.34)

using Assumption C and Theorem 1 (ii).

(ii) I need to show that RV avg(p̂∗)−RV avg(p∗) = RV avg(ξ) +Op

(
1√
K

)
.

I define the average realized covariance of two given processes Ut and Vt by RCavg(U, V ) as

an extension of the average realized variance - RV avg(.) - the notion introduced earlier:

RCavg(U, V ) =
1

K

K∑
k=1

RC(k)(U, V ), (A.35)

where

RV (k)(U, V ) =

nk∑
i=1

(Uk−1+K i
n
− Uk−1+K i−1

n
)(Vk−1+K i

n
− Vk−1+K i−1

n
). (A.36)

The average realized variance of the adjusted price could be written as

RV avg(p̂∗) = RV avg(p∗ + F(β − β̂) + ξ)

= RV avg(p∗) +RV avg(F(β − β̂))︸ ︷︷ ︸
(a)

+RV avg(ξ)

+ 2RCavg(F(β − β̂), ξ)︸ ︷︷ ︸
(b)

+2RCavg(p∗,F(β − β̂))︸ ︷︷ ︸
(c)

+2RCavg(p∗, ξ)︸ ︷︷ ︸
(d)

,

(A.37)

as a result of the definitions in (A.22) and (A.23) as well as the average realized covariance

in (A.35) and (A.36).

Using (A.37), I need to show that each of the terms (a), (b), (c) and (d) is Op

(
1√
K

)
to be
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able to prove Lemma 1 (ii).

(a) = RV avg(F(β − β̂)) =
1

K

K∑
k=1

RV (k)(F(β − β̂))

=
1

K

K∑
k=1

nk∑
i=1

[
(F

′

k−1+K i
n

− F
′

k−1+K i−1
n

)(β − β̂)
]2

=
1

K

K∑
k=1

nk∑
i=1

(β − β̂)
′
(Fk−1+K i

n
− Fk−1+K i−1

n
)(F

′

k−1+K i
n

− F
′

k−1+K i−1
n

)(β − β̂)

=
1

K

K∑
k=1

nk∑
i=1

trace
(
(β − β̂)

′
(Fk−1+K i

n
− Fk−1+K i−1

n
)(F

′

k−1+K i
n

− F
′

k−1+K i−1
n

)(β − β̂)
)

=
1

K

K∑
k=1

nk∑
i=1

trace

(β − β̂)(β − β̂)
′︸ ︷︷ ︸

oP (1/n)

(Fk−1+K i
n
− Fk−1+K i−1

n
)(F

′

k−1+K i
n

− F
′

k−1+K i−1
n

)︸ ︷︷ ︸
OP (1)


=

1

K

K∑
k=1

nk∑
i=1

oP (1/n) =

(
1

K

K∑
k=1

nk

)
oP (1/n) = n oP (1/n) = oP (

√
n

n
),

(A.38)

using the Normality limit distribution of β−β̂ as well as the rate of convergence of Theorem

1 (ii). I also use the assumption that the fourth moment of Ft is bounded and the definition

of n in (A.24). Finally, as a result of condition (A.28), (a) = oP (
√
n
n ) < Op

(
1√
K

)
.

(b) = RCavg(F(β − β̂), ξ) =
1

K

K∑
k=1

RC(k)(F(β − β̂), ξ)

=
1

K

K∑
k=1

nk∑
i=1

(ξk−1+K i
n
− ξk−1+K i−1

n
)(F

′

k−1+K i
n

− F
′

k−1+K i−1
n

)︸ ︷︷ ︸
OP (1)

(β − β̂)︸ ︷︷ ︸
oP (1/

√
n)

=
1

K

K∑
k=1

nk∑
i=1

oP (1/
√
n) =

(
1

K

K∑
k=1

nk

)
oP (1/

√
n) = n oP (1/

√
n) = oP

(√
n

n

)
,

(A.39)

using Assumption 2 (ii), Theorem 1 (ii), Assumption 3 and the definition of n in (A.24).
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Finally, as a result of condition (A.28), (b) = oP

(√
n
n

)
= op

(
1√
K

)
< Op

(
1√
K

)
.

(c) = RCavg(p∗,F(β − β̂)) =
1

K

K∑
k=1

RC(k)(p∗,F(β − β̂))

=
1

K

K∑
k=1

nk∑
i=1

(p∗
k−1+K i

n

− p∗
k−1+K i−1

n

)(F
′

k−1+K i
n

− F
′

k−1+K i−1
n

)︸ ︷︷ ︸
<OP (1)

(β − β̂)︸ ︷︷ ︸
oP (1/

√
n)

<

(
1

K

K∑
k=1

nk

)
oP (1/

√
n) = n oP (1/

√
n) = op

(
1√
K

)
< Op

(
1√
K

)
,

(A.40)

using Assumptions 1, 2 and Theorem 1 (ii). The derivation of the asymptotic order in (A.40)

results from the definition of n in (A.24) and the condition (A.28).

(d) = RCavg(p∗, ξ) = Op

(
1√
K

)
is a direct result from Lemma A.2 part (b) relative to the

multiple grid case, page 1408 from Zhang et al. (2005); which completes the proof of Lemma

1.

Now, I turn to the proof of (A.26) using Lemma 1. Being back to the two components

of (A.29), I derive the joint limit distribution of these two components in order to show

(A.26). In expression (A.15) of their Appendix, Zhang et al. (2005) show that for an i.i.d.

and exogenous noise ξ, the joint distribution of RV (ξ) and RV avg(ξ) is given by

1√
n

 RV (ξ)− 2NE[ξ2]

RV avg(ξ)K − 2NKE[ξ2]

 L−→ N


 0

0

 ,

 4E[ξ4] 4V ar[ξ2]

4V ar[ξ2] 4E[ξ4]


 . (A.41)

Using Lemma 1, the limiting result (A.41) becomes

 √
n
(
RV (p̂∗)

2n − E[ξ2t ]
)

√
K
n

(
RV avg(p̂∗)−RV avg(p∗)− 2nE[ξ2]

)


L−→ N


 0

0

 ,

 E[ξ4] 2V ar[ξ2]

2V ar[ξ2] 4E[ξ4]


 ,

(A.42)
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which yields the limit distribution of (A.26).

To complete the proof, it remains to show (A.27). This result is derived in Section 3.4 of

Zhang et al. (2005).
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